Jacobi恒等式就是

prod_{n=0}^infty (1-x^{2n+2})(1+x^{2n+1}z)(1+x^{2n+1}z^{-1})=sum_{n=-infty}^{infty}x^{n^2}z^n	ag{A}

下面给出一个证明。

先证两个引理:

prod_{n=0}^infty(1+x^n z)=sum_{n=0}^inftyfrac{x^{n(n-1)/2}z^n}{(1-x)(1-x^2)dots(1-x^n)}	ag{E1}prod_{n=0}^infty(1+x^n z)^{-1}=sum_{n=0}^inftyfrac{(-1)^nz^n}{(1-x)(1-x^2)dots(1-x^n)}.	ag{E2}

需要 |x|<1 ;后者还需要 |z|<1 。不妨设

F(x, z)=prod_{n=0}^{infty} (1+x^nz)=sum_{n=0}^{infty}a_nz^n.	ag{E1-1}

由乘积形式,显然有

F(x, z) =(1+z) F(x, zx).	ag{E2-2}

写成求和形式,就是

sum_{n=0}^{infty}a_nz^n=(1+z)sum_{n=0}^{infty}a_nx^nz^n,

也就是递推关系

egin{align} a_n&=a_nx^n+a_{n-1}x^{n-1}\ a_n&=frac{x^{n-1}}{1-x^n}a_{n-1}. end{align}

然后累乘就可以了。第二个等式同理。

接下来,我们开始证明。

egin{align} prod_{n=0}^infty (1+x^{2n+1}z)&=prod_{n=0}^infty (1+x^{2n}(xz))\ {color{blue}{	ext{(E1)}}}&=sum_{n=0}^infty frac{x^{n(n-1)}(xz)^n}{(1-x^2)cdots(1-x^{2n})}\ &=sum_{n=0}^infty frac{x^{n^2}z^n}{(1-x^2)cdots(1-x^{2n})}\ &=sum_{n=0}^infty x^{n^2}z^ncdotfrac{prod_{j=0}^infty(1-x^{2n+2+2j})}{prod_{j=0}^infty(1-x^{2j+2})}\ &=frac{1}{prod_{j=0}^infty(1-x^{2j+2})} sum_{n=0}^infty x^{n^2}z^ncdot{prod_{j=0}^infty(1-x^{2n+2+2j})} end{align}

注意到当 n<0 ,后面的因子中一定会出现一项 (1-x^0)=0 ,因此可以放心地把求和下限放在负无穷。

接下来我们看右边的连乘式: egin{align} &{prod_{j=0}^infty(1-x^{2n+2+2j})}\ =&{prod_{j=0}^infty(1+x^{2j}(-x^{2n+2}))}\ =&sum_{m=0}^inftyfrac{x^{m(m-1)}(-x^{2n+2})^m}{(1-x^2)dots(1-x^{2m})}\ =&sum_{m=0}^inftyfrac{x^{m^2+m+2nm}(-1)^m}{(1-x^2)dots(1-x^{2m})} end{align}

再代回去:

egin{align} &frac{1}{prod_{j=0}^infty(1-x^{2j+2})} sum_{n=-infty}^infty x^{n^2}z^ncdotsum_{m=0}^inftyfrac{x^{m^2+m+2nm}(-1)^m}{(1-x^2)dots(1-x^{2m})} end{align}

交换求和顺序,把 x^{m^2+2nm}, x^{n^2} 凑成指数上的完全平方,并且创造一对 z^m z^{-m} ,分别放进前面和后面:

egin{align} &frac{1}{prod_{j=0}^infty(1-x^{2j+2})} sum_{n=-infty}^infty color{blue}{x^{n^2}}color{green}{z^n}cdotsum_{m=0}^inftyfrac{x^{color{blue}{m^2}+color{violet}m+color{blue}{2nm}}color{violet}{z^{-m}}color{green}{z^m}(-1)^m}{(1-x^2)dots(1-x^{2m})}\ =&frac{1}{prod_{j=0}^infty(1-x^{2j+2})}sum_{m=0}^infty frac{(-1)^mcolor{violet}{(xz^{-1})^m}}{(1-x^2)cdots(1-x^{2m})}sum_{n=-infty}^inftycolor{blue}{x^{(m+n)^2}color{green}{z^{m+n}}}\ color{blue}{	ext{(E2) }}=&frac{1}{prod_{j=0}^infty(1-x^{2j+2})}prod_{j=0}^infty (1+x^{2j+1}z^{-1})^{-1}sum_{k=-infty}^infty x^{k^2}z^k end{align}

最后我们把连等式的开头和结尾拼在一起,就得到结果啦!(LaTeX累死)

当然,由于引理的适用范围,我们只证明了 |z|>|x| 的情况。剩下的,解析延拓就解决了。

References

[1] G. E. Andrews, A Simple Proof for the Jacobis Triple Product Identity. AMS Joural.

[2] Jacobi Triple Product using Eulers identities, StackExchange.

题图源自维基百科。


推荐阅读:
相关文章