筆者今天分享幾道中學不等式例題及其處理方法

Cauchy 不等式)a_{i} ,b_{i} in R left( i=1,2,...,n 
ight) 則有:

left( sum_{i=1}^{n}{a_{i}b_{i}} 
ight)^{2}leqleft( sum_{i=1}^{n}{a_{i}^2}
ight)left( sum_{i=1}^{n}{b_{i}^2} 
ight)

證明:b_i=0left( i=1,2,...,n 
ight) ,結論成立

b_i 不全為零 left( i=1,2,...,n 
ight) ,則 sum_{i=1}^{n}{b_{i}^2}>0

fleft( x 
ight)=sum_{i=1}^{n}{left( a_i+b_ix 
ight)^{2}}

=left( sum_{i=1}^{n}{ b_i^{2}}
ight)x^{2}+left( 2 sum_{i=1}^{n}{a_{i}b_{i}}  
ight)x+left( sum_{i=1}^{n}{ a_i^{2}}
ight)

則對 forall xin Rfleft( x 
ight)geq 0

由中學知識知道 	riangle =left( 2 sum_{i=1}^{n}{a_{i}b_{i}}  
ight)^2-4left( sum_{i=1}^{n}{ a_i^{2}}
ight)left( sum_{i=1}^{n}{ b_i^{2}}
ight)leq0

left( sum_{i=1}^{n}{a_{i}b_{i}} 
ight)^{2}leqleft( sum_{i=1}^{n}{a_{i}^2}
ight)left( sum_{i=1}^{n}{b_{i}^2} 
ight) , 證畢

2016 四川預賽 11 )設實數 x , y , z , w 滿足 x+y+z+w=1 ,則

M=xw+2yw+3xy+3zw+4xz+5yz

的最大值是________

注意到 M=xw+2yw+3xy+3zw+4xz+5yz

=xleft( y+z+w 
ight)+2yleft( x+z+w 
ight)+3zleft( x+y+w 
ight)

=xleft(1- x 
ight)+2yleft( 1-y
ight)+3zleft( 1-z 
ight)

leq frac{1}{4}+frac{2}{4}+frac{3}{4}=frac{3}{2}

當且僅當 x=y=z=frac{1}{2} 等號成立

M_{max}=frac{3}{2}

2016 廣東預賽 2 )設正數 x , y 滿足 x+3y=5xy ,則 3x+4y 的最小值

是__________

參考答案給出的解法是:

注意到 x+3y=5xyLeftrightarrow left( 3x-frac{9}{5} 
ight)left( 4y-frac{4}{5} 
ight)=frac{36}{25}

x+3y=5xyx>frac{3}{5}y>frac{1}{5}

於是 3x+4y= left( 3x-frac{9}{5} 
ight)+left( 4y-frac{4}{5} 
ight)+frac{13}{5}

geq 2sqrt{ left( 3x-frac{9}{5} 
ight)left( 4y-frac{4}{5} 
ight)}+frac{13}{5}=frac{12}{5}+frac{13}{5}=5

可謂牛刀殺雞,事實上,本題只需用" 1 的代換"就很容易解決:

x+3y=5xyLeftrightarrow frac{1}{5y}+frac{3}{5x}=1

於是 3x+4y=left( 3x+4y 
ight)left(  frac{1}{5y}+frac{3}{5x}
ight)

=frac{3x}{5y}+frac{12y}{5x}+frac{13}{5}geq 2sqrt{frac{3x}{5y}cdotfrac{12y}{5x}}+frac{13}{5}=5

1998 Japan )設 x , y , z >0 ,若 frac{1}{x+1}+frac{1}{y+1}+frac{1}{z+1}=1

求證: xyzgeq 8

證明: frac{1}{x+1}+frac{1}{y+1}+frac{1}{z+1}=1Leftrightarrow xyz=x+y+z+2

注意到 9=3^{2}=left( frac{1}{sqrt{x+1}}sqrt{x+1}+ frac{1}{sqrt{y+1}}sqrt{y+1}+ frac{1}{sqrt{z+1}}sqrt{z+1} 
ight)^{2}

Cauchy 不等式:

left( frac{1}{sqrt{x+1}}sqrt{x+1}+ frac{1}{sqrt{y+1}}sqrt{y+1}+ frac{1}{sqrt{z+1}}sqrt{z+1} 
ight)^{2}

leqleft( frac{1}{x+1}+frac{1}{y+1}+frac{1}{z+1} 
ight)left( x+y+z+3 
ight)

=x+y+z+3

從而 x+y+zgeq 6

因此 xyz=x+y+z+2geq 8 ,得證

2016 河北 12 )設 a , b , cgeq0 滿足 a+b+c=1

求證: frac{9}{4}leq frac{1}{1+a}+ frac{1}{1+b}+ frac{1}{1+c}leqfrac{5}{2}

證明:對於左邊的不等式我們用與上一題相同的方法處理

注意到 9=3^{2}=left( frac{1}{sqrt{a+1}}sqrt{a+1}+ frac{1}{sqrt{b+1}}sqrt{b+1}+ frac{1}{sqrt{c+1}}sqrt{c+1} 
ight)^{2}

Cauchy 不等式:

left( frac{1}{sqrt{a+1}}sqrt{a+1}+ frac{1}{sqrt{b+1}}sqrt{b+1}+ frac{1}{sqrt{c+1}}sqrt{c+1} 
ight)^{2}

leqleft( frac{1}{a+1}+frac{1}{b+1}+frac{1}{c+1} 
ight)left( a+b+c+3 
ight)

=4left( frac{1}{a+1}+frac{1}{b+1}+frac{1}{c+1} 
ight)

frac{9}{4}leq frac{1}{1+a}+ frac{1}{1+b}+ frac{1}{1+c}

由於a+b+c=1 ,故 0leq aleq1

我們來證明 frac{1}{1+a}leq 1-frac{a}{2} ,從而就有:

frac{1}{1+a}+ frac{1}{1+b}+ frac{1}{1+c}leq3-frac{a+b+c}{2}=frac{5}{2}

frac{1}{1+a}leq 1-frac{a}{2}Leftrightarrow aleft( 1-a 
ight)geq 0

前面說明了0leq aleq1,因而 frac{1}{1+a}leq 1-frac{a}{2} 成立

於是 frac{1}{1+a}+ frac{1}{1+b}+ frac{1}{1+c}leqfrac{5}{2}

證畢


推薦閱讀:
相关文章