在閱讀之前,你可能對這篇感興趣:

fjddy:概率論複習筆記(6)——Borel-Cantelli引理與Borel強大數定律?

zhuanlan.zhihu.com
圖標
fjddy:概率論複習筆記(7)——Kolmogorov大數定律?

zhuanlan.zhihu.com
圖標
fjddy:概率論複習筆記(8)——特徵函數與Lindberg-Lévy中心極限定理?

zhuanlan.zhihu.com
圖標

最近開始期末複習了,所以可能會高產一點!!!!

老師說Chebyshev不等式很重要很重要,那就先複習Chebyshev不等式吧!!

1 基本定理證明

設X是r.v., 下面用 EX 表示X的期望, DX 表示X的方差, I_A(x)=left{egin{aligned}&1, &xin A\&0,&x
otin Aend{aligned}
ight..

定理1.1[Chebyshev] Exi^2<+infty,forall varepsilon>0, P(|xi-Exi|geq varepsilon)leqdfrac{Dxi}{varepsilon^2}.

證明:注意到 dfrac{(xi-Exi)^2}{varepsilon^2}geq 1 以及 I_Aleq 1,

 egin{aligned}             P(|xi-Exi|geqvarepsilon)&=EI_{[|xi-Exi|geqvarepsilon]}	ext{     (看作均勻分布)} \             &leq Eleft(dfrac{(xi-Exi)^2}{varepsilon^2}I_{[|xi-Exi|geqvarepsilon]}
ight)\             &leq Eleft(dfrac{(xi-Exi)^2}{varepsilon^2}
ight)=dfrac{Dxi}{varepsilon^2}. quadsquare         end{aligned}

定理1.2[推廣Chebyshev] forallvarepsilon>0,          P(|xi-Exi|geq varepsilon)leqdfrac{E|xi-Exi|^p}{varepsilon^p}.

證明:思路是同上的, 只需注意到 dfrac{(xi-Exi)^p}{varepsilon^p}geq 1 即可. QED

例1.1 xi 是r.v., 若 Dxi=0 , 則 P(xi=c)=1 . (即 xi 幾乎處處是同一常數)

證明:主要思路是利用 {x:x>0}=igcuplimits_{n=1}^{infty}{x: xgeqdfrac{1}{n}}.c=Exi , 則

egin{aligned}             P(xi
eq c)&=P(|xi-c|>0) \             &=Pleft(igcuplimits_{n=1}^{infty}left[|xi-c|geqdfrac{1}{n}<br />
ight]<br />
ight) \             &leqsumlimits_{n=1}^{infty}Pleft(|xi-c|geqdfrac{1}{n}<br />
ight) 	ext{ (次$sigma$可加性)}\             &leqsumlimits_{n=1}^{infty}n^2Dxi=0. 	ext{ (Chebyshev)}         end{aligned}

註:可以推廣為 P(xi=c)=1Leftrightarrow E|xi-c|^p=0, (p>0).

2 Chebyshev不等式的應用

下面記 {xi_n:xi}subset(Omega,mathscr{F},P).

如果 forallvarepsilon>0 都有 limlimits_{n	oinfty}P(|xi_n-xi|geqvarepsilon)=0, 則稱 xi_n 依概率收斂xi .

L^p 收斂(也稱p階收斂)指的是 limlimits_{n	oinfty}|xi_n-xi|_p=0, 這裡 |cdot|_p 代表p-範數.

例2.1 如果r.v.列 xi_n L^p 收斂為 xi , 則 xi_n 依概率收斂到 xi , 且 E|xi_n|^p	o E|xi|^p.

證明:利用Chebyshev不等式, forallvarepsilon>0,

 P(|xi_n-xi|geqvarepsilon)leqdfrac{1}{varepsilon^p}E|xi_n-xi|^p         =dfrac{1}{varepsilon^p}|xi_n-xi|_p^p	o 0 (n	oinfty).

所以 xi_n 依概率收斂到 xi . 而根據範數的三角不等式有 ||xi_n|_p-|xi|_p|leq|xi_n-xi|_p	o 0(n	oinfty),E|xi_n|^p	o E|xi|^p, QED

定理2.2 [Chebyshev弱大數定律] {x_n}_{ngeq 1} 是兩兩不相關的r.v.序列, 且 suplimits_{n}Dxi_n 有界, 則 forall varepsilon>0,

limlimits_{n	oinfty}Pleft(dfrac{1}{n}sumlimits_{i=1}^n(xi_i-Exi_i)
ight)=0.

證明:利用Chebyshev不等式, 得

egin{aligned}             limlimits_{n	oinfty}Pleft(dfrac{1}{n}sumlimits_{i=1}^n(xi_i-Exi_i)
ight)              leq&dfrac{1}{varepsilon^2}Dleft(dfrac{1}{n}sumlimits_{i=1}^n(xi_i-Exi_i)
ight) \             =&dfrac{1}{n^2varepsilon^2}Dleft(sumlimits_{i=1}^n(xi_i-Exi_i)
ight) \             leq&dfrac{1}{nvarepsilon}suplimits_{i}Dxi_i	o 0(n	oinfty).         end{aligned}

定理2.3 [多項式逼近]fin C^0[0,1], f_n(x)=sumlimits_{m=0}^nleft(egin{aligned}&n\&mend{aligned}
ight)             x^m(1-x)^{n-m}fleft(dfrac{m}{n}
ight),limlimits_{n	oinfty}suplimits_{xin[0,1]}|f_n(x)-f(x)|=0.

證明: forall xin[0,1] , 設 {x_i} 為i.i.d.r.v.列, 滿足 P(xi_1=1)=x, P(xi_1=0)=1-x . (兩點分布)則

Efleft(dfrac{1}{n}sumlimits_{i=1}^nxi_i
ight)             =sumlimits_{m=0}^nPleft(sumlimits_{i=1}^nxi_i=m
ight)fleft(dfrac{m}{n}
ight)=f_n(x).

由於f是一致連續的, 則 forallvarepsilon>0, existsdelta>0, forall x,yin[0,1], 如果 |x-y|leqdelta, 則有 |f(x)-f(y)|leqvarepsilon. . 從而(記 |f|_{infty}	riangleqsup f )

       egin{aligned}             |f_n(x)-f(x)|             =&left|Efleft(dfrac{1}{n}sumlimits_{i=1}^nxi_i
ight)-f(x)
ight| \             leq&left|Eleft[fleft(dfrac{1}{n}sumlimits_{i=1}^nxi_i
ight)-f(x)
ight]                 I_{left[left|frac{1}{n}sumlimits_{i=1}^nxi_i-x
ight|geqdelta
ight]}
ight| \             &+                 left|Eleft[fleft(dfrac{1}{n}sumlimits_{i=1}^nxi_i
ight)-f(x)
ight]                 I_{left[left|frac{1}{n}sumlimits_{i=1}^nxi_i-x
ight|<delta
ight]}
ight| \             leq&2|f|_{infty}EI_{left[left|frac{1}{n}sumlimits_{i=1}^nxi_i-x
ight|geqdelta
ight]}                 +varepsilon 	ext{ (對前一行分別作放縮)} \             =&2|f|_{infty}Pleft(left|dfrac{1}{n}sumlimits_{i=1}^nxi_i-x
ight|geqdelta
ight)+varepsilon\             leq&2|f|_{infty}dfrac{1}{ndelta^2}nDxi_1+varepsilon	ext{ (用Chebyshev不等式)} \             =&2|f|_{infty}dfrac{1}{ndelta^2}x(1-x)+varepsilon \             leq&2|f|_{infty}dfrac{1}{ndelta^2}cdotdfrac{1}{4}+varepsilon.         end{aligned}

這樣 suplimits_{xin[0,1]}|f_n(x)-f(x)|leqdfrac{|f|_{infty}}{2ndelta^2}+varepsilon, 兩邊取 n	oinfty 以及利用 varepsilon 的任意性即可證完. QED

下面記 Phi(y)=int_{-infty}^{y}dfrac{1}{sqrt{2pi}}e^{-x^2/2}dx標準正態分布函數, {xi_n}_{ngeq 1}是一列獨立r.v.列, 均值與方差有限, 記a_k=Exi_k, b_k^2=Dxi_k, B_n^2=sumlimits_{k=1}^nb_k^2.eta_k=dfrac{1}{B_k}sumlimits_{i=1}^k(xi_i-a_i) 為標準化的r.v.

Lindberg條件指的是對於 forallvarepsilon>0, 都有

            limlimits_{n	oinfty}dfrac{1}{B_n^2}sumlimits_{k=1}^nint_{[x-a_k|geqvarepsilon B_k]}             (x-a_k)^2dF_k(x)=0,

Feller條件指的是 limlimits_{n	oinfty}left(dfrac{1}{B_n}maxlimits_{1leq kleq n}b_k
ight)=0.

定理2.4 [Lindberg-Feller中心極限定理]

left{egin{aligned}                 &limlimits_{n	oinfty}P(eta_nleq y)=psi(y) \                 &{xi_n}	ext{滿足Feller條件}             end{aligned}
ight. Leftrightarrow {xi_n}	ext{滿足Lindberg條件}.

證明:不是這裡的重點, 略.

定理2.5 [Lyapunov]{xi_n} 是獨立r.v.列. 若 existsdelta>0, 使得

limlimits_{n	oinfty}dfrac{1}{B_n^{2+delta}}sumlimits_{k=1}^nE(xi_k-a_k)^{2+delta}=0,P(eta_nleq x)	oPhi(x).

證明:利用Lindberg-Feller中心極限定理以及Chebyshev不等式即可.

egin{aligned}             &dfrac{1}{B_n^2}sumlimits_{k=1}^nint_{[|x-a_k|geqvarepsilon B_n]}(x-a_k)^2dF_k(x) \             leq&dfrac{1}{varepsilon^{delta}B_n^{delta+2}}sumlimits_{k=1}^n             int_{mathbb{R}}(x-a_k)^{2+delta}dF_k(x) \             =&dfrac{1}{varepsilon^{delta}B_n^{delta+2}}sumlimits_{k=1}^nE(xi_k-a_k)^{2+delta}	o 0(n	oinfty).         end{aligned}

祝大家複習愉快,考試順利!

推薦閱讀:

相关文章