Model Predictive Control

Model Predictive Control with Constraints

From the last note, we have the augmented state space model

x(k+1)=Ax(k)+BDelta u(k) \ y(k)=Cx(k) \ Y = Fx(k)+PhiDelta U\ J=frac{1}{2}Delta U^T(Phi^TPhi+ar R)Delta U-Delta U^T Phi^T(R_s-Fx(k))

If we denote

H=Phi^TPhi+ar R \ f=-Phi^T(R_s-Fx(k))

We have

	ag{} J=frac{1}{2}Delta U^THDelta U+Delta U^T f

Now we will discuss different kinds of constraints.

  1. Constraints on the control variable incremental variation

	ag{} Delta U^{min}leDelta U leDelta U^{max}

We will have

Delta Ule Delta U^{max}\ -Delta Ule -Delta U^{min}

Equally, we have

	ag{} egin{bmatrix} -I \ I end{bmatrix} Delta U le egin{bmatrix} -Delta U^{min} \ Delta U^{max} end{bmatrix}

2. Constraints on the amplitude of control variable

overbrace{egin{bmatrix} u(k)\ u(k+1)\ vdots\ u(k+N_p-1) end{bmatrix}}^{U}= overbrace{egin{bmatrix} 1\ 1\ vdots\ 1 end{bmatrix}}^{C_1}u(k-1)+ overbrace{egin{bmatrix} 1 & 0 & dotsm & 0\ 1 & 1 & dotsm & 0\ vdots&vdots&ddots&vdots\ 1&1&dotsm&1 end{bmatrix}}^{C_2} overbrace{egin{bmatrix} Delta u(k)\ Delta u(k+1)\ vdots\ Delta u(k+N_p-1) end{bmatrix}}^{Delta U}

Equally, we have

	ag{}U=C_1u(k-1)+C_2Delta U

We can get the following result

	ag{}egin{bmatrix} -C_2 \ C_2 end{bmatrix} Delta U le egin{bmatrix} -U^{min}+C_1u(k-1) \ U^{max}-C_1u(k-1) end{bmatrix}

3. Output Constraints

	ag{}Y^{min}le Y le Y^{max}

We have the conclusion form the last note

	ag{}Y=Fx(k)+PhiDelta U

We can derive the same result as the previous procedures

	ag{}egin{bmatrix} -Phi \ Phi end{bmatrix} Delta U le egin{bmatrix} -Y^{min}+Fx(k) \ Y^{max}-Fx(k)  end{bmatrix}

4. Conclusion

	ag{}egin{bmatrix} -I \ I \ -C_2 \ C_2 \ -Phi \ Phi end{bmatrix} Delta U le egin{bmatrix} -Delta U^{min} \ Delta U^{max} \ -U^{min}+C_1u(k-1) \ U^{max}-C_1u(k-1) \ -Y^{min}+Fx(k) \ Y^{max}-Fx(k)  end{bmatrix}

Example

We have the state space model

x_p(k+1)=x_p(k)+u(k) \ y(k)=x_p(k)

The control horizon is 1 and the predictive horizon is 2.

N_c=1 \ N_p=2 \ r_w=5 \ r(k)=1quad(kge0) \ Y^{max}=[1 quad 1]^T

First we have the augmented state space model

	ag{}A=egin{bmatrix} 1 & 0 \ 1 & 1end{bmatrix}quad  B=egin{bmatrix} 1  \ 1 end{bmatrix}quad C=egin{bmatrix} 0 & 1 end{bmatrix}

Then we get

	ag{}F=egin{bmatrix} 1 & 1 \ 2&1end{bmatrix}quad  Phi=egin{bmatrix} 1  \ 2 end{bmatrix}quad

According to the question

	ag{}egin{bmatrix} 1 \ 2 end{bmatrix}  Delta u(k) le egin{bmatrix} 1-x_1(k)-x_2(k) \ 1-2x_1(k)-x_2(k) end{bmatrix}

Also we need to calculate J

H=Phi^TPhi+ar R = 10\ f=-Phi^T(R_s-Fx(k)) = 5x_1(k)+3x_2(k)-3\ J=5Delta u^2(k)+Delta u(k)(5x_1(k)+3x_2(k)-3)

For k=0

Delta u(0)le0.5 \ J=5Delta u^2-3Delta u

We can get

	ag{}Delta u(0)=0.3

For k=1

x(1)=Ax(0)+BDelta u(0)=[0.3 quad 0.3]^T\ Delta u(1) le0.05 \ J=5Delta u^2(1)-0.6Delta u(1)

we can get

	ag{}u(1)=0.05


推薦閱讀:
相关文章