在上一篇笔记中,我们主要讲了Chebyshev不等式的应用:

fjddy:概率论复习笔记(5)——Chebyshev不等式?

zhuanlan.zhihu.com
图标

而在这次,还会多次用到Chebyshev不等式,可见它的重要性. 还不快好好复习?

事实上, Borel-Cantelli引理除了Borel强大数定律以外,在Komogorov强大数定律的证明中也会用到, 但是考虑到篇幅较长(要证好几个引理, 至少它在我的上课笔记本上记满了5页纸), 还是决定在下一篇再写它吧:如下.

fjddy:概率论复习笔记(7)——Kolmogorov大数定律?

zhuanlan.zhihu.com
图标

目录

  1. 几乎必然收敛、依概率收敛的定义以及它们的等价刻画.
  2. Borel-Cantelli引理的证明
  3. Borel强大数定律的证明

1 引入

首先介绍几个概念. 下面记 (Omega,mathscr{F},P) 是个概率空间, {xi_n: xi}_{ngeq 1} 是它上面的r.v.列.

定义1.1[几乎必然收敛]如果 exists Ain mathscr{F} 满足 P(A)=0 (即A是个零测集), 使得 forall omegain A^c, xi_n(omega)	oxi(omega), 则称 xi_n 几乎必然收敛到 xi , 或者记为

xi_nstackrel{a.s.}{longrightarrow}xi(n	oinfty).

定义1.2 [依概率收敛] 如果 forallvarepsilon>0 都有 limlimits_{n	oinfty}P(|xi_n-xi|geqvarepsilon)=0, 则称 xi_n 依概率收敛到 xi , 或者记为 xi_nstackrel{P}{longrightarrow}xi(n	oinfty).

利用极限的唯一性可以证明上面两种收敛的极限几乎必然唯一.

a.s.收敛可推出依概率收敛, 反之不成立, 见下面例子:

例1.1 Omega=(0,1], mathscr{F}=(0,1]capmathscr{B}(mathbb{R}) 是个Borel- sigma 代数. 把P取为 mathscr{B}(mathbb{R}) 上的Lebesgue测度. 令

 eta_{ki}(omega)=left{egin{aligned}&1, &omegainleft(dfrac{i-1}{k},dfrac{i}{k}
ight]\             &0,&omega
otinleft(dfrac{i-1}{k},dfrac{i}{k}
ight]end{aligned}
ight.这里 k=1,2,cdots; i=1,2,cdots,k, 先取定k再取定i. 定义 xi_n	riangleqeta_{ki}, n=i+dfrac{k(k-1)}{2}, 该定义合理(没重复的n对应不同的k,i).

注意到forall omegainOmega, 必有无穷个n使得 xi_n(omega)=0, 也有无穷多个m使得 xi_m(omega)=1, 所以不可能几乎必然收敛为0, 即

xi_nstackrel{a.s.}{
rightarrow}0(n	oinfty).

另一方面,

 forallvarepsilonin(0,1), P(xi_n(omega)>varepsilon)=P(eta_{ki}(omega)>varepsilon)             =Pleft(dfrac{i-1}{k}<omegaleqdfrac{i}{k}
ight)=dfrac{1}{k},

n	oinfty, 则根据 n=i+dfrac{k(k-1)}{2}leqdfrac{k(k+1)}{2} 可知 k	oinfty.limlimits_{n	oinfty}P(xi_n>varepsilon)=0. 从而

  xi_nstackrel{P}{longrightarrow}0(n	oinfty).

定义1.3 [上极限集与下极限集](1)把

  igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n         ={omega: omega	ext{在无穷多个}A_n	ext{中}}={omega:forall jinmathbb{N},exists kgeq j(xin A_k)}称为 A_n 的上极限集, 记为 limsuplimits_{n	oinfty}A_n. (2)把 igcuplimits_{k=1}^{infty}igcaplimits_{n=k}^{infty}A_n         ={omega: omega	ext{不在至多有限个}A_n	ext{中}}         ={omega:exists j_0inmathbb{N},exists kgeq j_0(xin A_k)}称为A_n的下极限集, 记为 liminflimits_{n	oinfty}A_n.

显然 liminflimits_{n	oinfty}A_nsubsetlimsuplimits_{n	oinfty}A_n.

下面两个定理很重要, 它刻画了几乎必然收敛与依概率收敛.

定理1.1 [几乎必然收敛的刻画]

xi_nstackrel{a.s.}{longrightarrow}xi             Longleftrightarrow forallvarepsilon>0, Pleft(igcaplimits_{k=1}^{infty}             igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0.

证明:只需利用 {x:x<varepsilon}=igcaplimits_{n=1}^{infty}{x: xgeqdfrac{1}{n}}, 并注意到

egin{aligned}             xi_nstackrel{a.s.}{longrightarrow}xi              Longleftrightarrow &Pleft(limlimits_{n	oinfty}xi_n=xi
ight)=1 \             Longleftrightarrow &P({omegainOmega: xi_n(omega)	oxi(omega)})=1 \             Longleftrightarrow &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=1}^{infty}                 igcaplimits_{i=n}^{infty}left[|xi_i-xi|<dfrac{1}{k}
ight]
ight)=1 \             Longleftrightarrow &Pleft(igcuplimits_{k=1}^{infty}igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqdfrac{1}{k}
ight]
ight)=0 \             Longleftrightarrow &Pleft(igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqdfrac{1}{k}
ight]
ight)=0, forall kgeq 1                 	ext{(次$sigma$可加性与单调性)} \             Longleftrightarrow &Pleft(igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqvarepsilon
ight]
ight)=0,                  forall varepsilon>0. square         end{aligned}

定理1.2 [依概率收敛的刻画]

xi_nstackrel{P}{longrightarrow}xi             Longleftrightarrow             	ext{对${xi_n}$的任一子列${xi_n}$, 都存在子列${xi_{n_k}}_{kgeq 1}$, 使得}xi_{n_k}stackrel{a.s.}{longrightarrow}xi.

证明:Rightarrow 」: 假定 xi_nstackrel{P}{longrightarrow}xi, 根据定义, 对它的任一子列 {xi_{n}} 都有 xi_nstackrel{P}{longrightarrow}xi, 从而 forall kgeq 1, existsxi_{n_k}subset{xi_n}, 使得

egin{aligned}             &Pleft(|xi_{n_k}-xi|geqdfrac{1}{k}
ight)leqdfrac{1}{2^k} \             Longleftrightarrow & Pleft(igcuplimits_{k=m}^{infty}             left[|xi_{n_k}-xi|geqdfrac{1}{k}
ight]
ight)             leqsumlimits_{k=m}^{infty}dfrac{1}{2^k}=dfrac{1}{2^{m-1}}.         end{aligned}

forall varepsilon>0取m充分大, 使得 varepsilon>dfrac{1}{k}, k=m,m+1,cdots, 则对于 jgeq maxleft{m, leftlfloordfrac{1}{varepsilon}
ight
floor+1
ight},

   egin{aligned}             &Pleft(igcuplimits_{k=m}^{infty}left[|xi_{n_k}-xi|>varepsilon<br />
ight]<br />
ight)                 leqdfrac{1}{2^{j-1}}\             Longrightarrow & limlimits_{j	oinfty}             Pleft(igcuplimits_{k=j}^{infty}left[|xi_{n_k}-xi|geqvarepsilon<br />
ight]<br />
ight)=0 \             Longleftrightarrow &Pleft(igcaplimits_{j=1}^{infty}igcuplimits_{k=j}^{infty}             left[|xi_{n_k}-xi|geqvarepsilon<br />
ight]<br />
ight)=0.         end{aligned}

Leftarrow 」(反证)假设 xi_nstackrel{P}{longrightarrow}xi 不成立, 即 existsvarepsilon_0>0,delta>0 以及 {xi_{n_m}}subset{xi_n}, 使得

 P(|xi_{n_m}-xi|geqvarepsilon_0)>delta>0,forall ngeq 1.

(即这个子列不是依概率收敛). 对此子列而言,

 egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{m=k}^{infty}                 [|xi_{n_m}-xi|geqvarepsilon_0]
ight) \             =&limlimits_{k	oinfty}Pleft(igcuplimits_{m=k}^{infty}                 [|xi_{n_m}-xi|geqvarepsilon_0]
ight) \             geq&limsuplimits_{m	oinfty}P(|xi_{n_m}-xi|geqvarepsilon_0)>delta>0,         end{aligned}

xi_{n_k}stackrel{a.s.}{longrightarrow}xi 矛盾. QED

注:以后将会频繁利用上面两个定理, 尤其是几乎必然收敛的刻画. 利用这个刻画再结合概率测度的从上(下?)连续性可以进行放缩.

例1.2 xi_nstackrel{P}{longrightarrow}xi, f: mathbb{R}	omathbb{R} 连续, 则f(xi_n)stackrel{P}{longrightarrow}f(xi).

证明: xi_nstackrel{P}{longrightarrow}xi , 则 forall{xi_{n}}subset{xi_n}, exists{xi_{n_k}}subset{xi_n}, 使得 xi_{n_k}stackrel{a.s.}{longrightarrow}xi. 由于 fin C(mathbb{R}),f(xi_{n_k})stackrel{a.s.}{longrightarrow}f(xi). (复合函数连续性, 可参考数学分析书), 即得 f(xi_n)stackrel{P}{longrightarrow}f(xi). QED

例1.3 如果 sumlimits_{n=1}^{infty}|xi_n-xi|_p^p<+infty,xi_nstackrel{a.s.}{longrightarrow}xi.

证明:根据几乎必然收敛的刻画, 以及概率测度的单调性、从上连续性, 可以把欲证命题进行等价转化:

egin{aligned}             &xi_nstackrel{a.s.}{longrightarrow}xi\             Longleftrightarrow &forallvarepsilon>0, Pleft(igcaplimits_{k=1}^{infty}             igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0 \             Longleftrightarrow &forallvarepsilon>0, limlimits_{k	oinfty}                 Pleft(igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0.         end{aligned}

利用Cauchy准则, 可得

sumlimits_{n=1}^{infty}|xi_n-xi|_p^p<+infty             Longleftrightarrow limlimits_{k	oinfty}sumlimits_{n=k}^{infty}|xi_n-xi|_p^p=0.

egin{aligned}             &Pleft(igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]
ight) \             leq&sumlimits_{n=k}^{infty}P[|xi_n-xi|geqvarepsilon]	ext{ (次$sigma$可加性)}\             leq&sumlimits_{n=k}^{infty}dfrac{1}{varepsilon^p}E|xi_n-xi|^p	ext{ (Chebyshev)} \             &	o 0(k	oinfty) hspace{0.5cm}square         end{aligned}

2 Borel-Cantelli引理

有了前面的准备, 现在可以直接引入Borel-Cantelli引理了.

定理2.1 [Borel-Cantelli](1)我们有

  sumlimits_{n=1}^{infty}P(A_n)<+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=0.A_n 不可能发生无穷多次. (2)若 {A_n} 相互独立, 则有   sumlimits_{n=1}^{infty}P(A_n)=+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1.A_n必然发生无穷多次.

证明: (1)只需注意到

egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight) \             =&limlimits_{k	oinfty}Pleft(igcuplimits_{n=k}^{infty}A_n
ight)              	ext{ (序列${igcuplimits_{n=k}^{infty}A_n}_{kgeq 1}$单调递减)} \             leq&limlimits_{k	oinfty}sumlimits_{n=k}^{infty}P(A_n)              	ext{ (次$sigma$-可加性)} \             leq&0. 	ext{(利用条件以及Cauchy准则)}         end{aligned}

(2)欲证命题可以作如下转化:

 egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1 \             Longleftrightarrow &limlimits_{k	oinfty}Pleft(igcuplimits_{n=k}^{infty}A_n
ight)=1\             Longleftrightarrow &Pleft(igcuplimits_{n=k}^{infty}A_n
ight)=1, forall kgeq 1                 quad	ext{(单调递减趋于1, 只能为1)} \             Longleftrightarrow &Pleft(igcaplimits_{n=k}^{infty}A_n^c
ight)=0, forall kgeq 1.                 quad	ext{(de Morgan)}         end{aligned}

事实上,

 egin{aligned}             0&leq Pleft(igcaplimits_{n=k}^{infty}A_n^c
ight) \             &=limlimits_{m	oinfty}Pleft(igcaplimits_{n=k}^mA_n^c
ight)                 quad	ext{(从下连续性)} \             &=limlimits_{m	oinfty}prodlimits_{n=k}^m(1-P(A_n))                 quad	ext{(独立性)} \             &leqlimlimits_{m	oinfty}prodlimits_{n=k}^m(e^{-P(A_n)})                 quad(e^{-x}geq -x+1) \             &=expleft(-limlimits_{m	oinfty}sumlimits_{n=k}^mP(A_n)
ight)              =0.          end{aligned}

根据夹逼定理可以证明完毕. QED

注1:如果把相互独立减弱为两两不相关或者两两负相关, 结论仍成立.

注2:Borel-Cantelli给出了几乎处处收敛的充分条件(把上述 A_n	riangleq[|xi_n-xi|geqvarepsilon] ). 另外如果加上相互独立又给出了个几乎处处收敛的必要条件.

下面给出一个换了一种高大上表述的「推论」——Borel 0-1律.

推论2.2 [Borel 0-1律] {A_n} 相互独立, 则

egin{aligned}                 &sumlimits_{n=1}^{infty}P(A_n)<inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=0. \                 &sumlimits_{n=1}^{infty}P(A_n)=+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1.         end{aligned}

3 Borel强大数定律的证明

定理3.1 [Borel强大数定律] mu_n 是事件A在n次独立试验中出现的次数, p是A在每次试验中发生的概率, 则 dfrac{mu_n}{n}stackrel{a.s.}{longrightarrow}p.

证明:forallvarepsilon>0, 根据几乎必然收敛的刻画, 我们只需要证

  Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}             left[left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight]
ight)=0.

再根据Borel-Cantelli引理, 我们只需证

 sumlimits_{n=1}^{infty}Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight)<infty.

xi_i=left{egin{aligned}&1, &	ext{第i次A发生} \ &0, &	ext{第i次A不发生}end{aligned}
ight.,Exi_i=p, dfrac{mu_n}{n}-p=sumlimits_{i=1}^n(xi_i-p), 相当于作了中心化处理. 由于 {xi_n} 之间相互独立, 则有

 E(xi_i-p)(xi_j-p)=E(xi_i-p)E(xi_j-p)=0, forall i
eq j.

根据Chebyshev不等式(推广)以及题目所给的i.i.d条件,

 egin{aligned}         &Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight) \         leq&dfrac{1}{varepsilon^4}Eleft|dfrac{mu_n}{n}-p
ight|^4 \         =&dfrac{1}{varepsilon^4n^4}Eleft(sumlimits_{i=1}^n(xi_i-p)
ight)^4 \         =&dfrac{1}{varepsilon^4n^4}sumlimits_{i=1}^nsumlimits_{j=1}^nsumlimits_{k=1}^nsumlimits_{l=1}^n             E(xi_i-p)(xi_ji-p)(xi_k-p)(xi_l-p) \         =&dfrac{1}{varepsilon^4n^4}left[nE|xi_i-p|^4+mathrm{C}_n^2mathrm{C}_4^2E(xi_1-p)^2(xi_2-p)^2
ight] \         =&dfrac{1}{varepsilon^4n^4}left[npq(p^3+q^3)+3n(n-1)p^2q^2
ight] \         leq&dfrac{Cn^2}{varepsilon^4n^4}=dfrac{C}{n^2varepsilon^4}, 	ext{for some C}.         end{aligned}

从而

 sumlimits_{n=1}^{infty}Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight)         leqdfrac{C}{varepsilon^4}cdotdfrac{pi^2}{6}<+infty.

证明完毕. QED

推荐阅读:

相关文章