在上一篇筆記中,我們主要講了Chebyshev不等式的應用:

fjddy:概率論複習筆記(5)——Chebyshev不等式?

zhuanlan.zhihu.com
圖標

而在這次,還會多次用到Chebyshev不等式,可見它的重要性. 還不快好好複習?

事實上, Borel-Cantelli引理除了Borel強大數定律以外,在Komogorov強大數定律的證明中也會用到, 但是考慮到篇幅較長(要證好幾個引理, 至少它在我的上課筆記本上記滿了5頁紙), 還是決定在下一篇再寫它吧:如下.

fjddy:概率論複習筆記(7)——Kolmogorov大數定律?

zhuanlan.zhihu.com
圖標

目錄

  1. 幾乎必然收斂、依概率收斂的定義以及它們的等價刻畫.
  2. Borel-Cantelli引理的證明
  3. Borel強大數定律的證明

1 引入

首先介紹幾個概念. 下面記 (Omega,mathscr{F},P) 是個概率空間, {xi_n: xi}_{ngeq 1} 是它上面的r.v.列.

定義1.1[幾乎必然收斂]如果 exists Ain mathscr{F} 滿足 P(A)=0 (即A是個零測集), 使得 forall omegain A^c, xi_n(omega)	oxi(omega), 則稱 xi_n 幾乎必然收斂到 xi , 或者記為

xi_nstackrel{a.s.}{longrightarrow}xi(n	oinfty).

定義1.2 [依概率收斂] 如果 forallvarepsilon>0 都有 limlimits_{n	oinfty}P(|xi_n-xi|geqvarepsilon)=0, 則稱 xi_n 依概率收斂到 xi , 或者記為 xi_nstackrel{P}{longrightarrow}xi(n	oinfty).

利用極限的唯一性可以證明上面兩種收斂的極限幾乎必然唯一.

a.s.收斂可推出依概率收斂, 反之不成立, 見下面例子:

例1.1 Omega=(0,1], mathscr{F}=(0,1]capmathscr{B}(mathbb{R}) 是個Borel- sigma 代數. 把P取為 mathscr{B}(mathbb{R}) 上的Lebesgue測度. 令

 eta_{ki}(omega)=left{egin{aligned}&1, &omegainleft(dfrac{i-1}{k},dfrac{i}{k}
ight]\             &0,&omega
otinleft(dfrac{i-1}{k},dfrac{i}{k}
ight]end{aligned}
ight.這裡 k=1,2,cdots; i=1,2,cdots,k, 先取定k再取定i. 定義 xi_n	riangleqeta_{ki}, n=i+dfrac{k(k-1)}{2}, 該定義合理(沒重複的n對應不同的k,i).

注意到forall omegainOmega, 必有無窮個n使得 xi_n(omega)=0, 也有無窮多個m使得 xi_m(omega)=1, 所以不可能幾乎必然收斂為0, 即

xi_nstackrel{a.s.}{
rightarrow}0(n	oinfty).

另一方面,

 forallvarepsilonin(0,1), P(xi_n(omega)>varepsilon)=P(eta_{ki}(omega)>varepsilon)             =Pleft(dfrac{i-1}{k}<omegaleqdfrac{i}{k}
ight)=dfrac{1}{k},

n	oinfty, 則根據 n=i+dfrac{k(k-1)}{2}leqdfrac{k(k+1)}{2} 可知 k	oinfty.limlimits_{n	oinfty}P(xi_n>varepsilon)=0. 從而

  xi_nstackrel{P}{longrightarrow}0(n	oinfty).

定義1.3 [上極限集與下極限集](1)把

  igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n         ={omega: omega	ext{在無窮多個}A_n	ext{中}}={omega:forall jinmathbb{N},exists kgeq j(xin A_k)}稱為 A_n 的上極限集, 記為 limsuplimits_{n	oinfty}A_n. (2)把 igcuplimits_{k=1}^{infty}igcaplimits_{n=k}^{infty}A_n         ={omega: omega	ext{不在至多有限個}A_n	ext{中}}         ={omega:exists j_0inmathbb{N},exists kgeq j_0(xin A_k)}稱為A_n的下極限集, 記為 liminflimits_{n	oinfty}A_n.

顯然 liminflimits_{n	oinfty}A_nsubsetlimsuplimits_{n	oinfty}A_n.

下面兩個定理很重要, 它刻畫了幾乎必然收斂與依概率收斂.

定理1.1 [幾乎必然收斂的刻畫]

xi_nstackrel{a.s.}{longrightarrow}xi             Longleftrightarrow forallvarepsilon>0, Pleft(igcaplimits_{k=1}^{infty}             igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0.

證明:只需利用 {x:x<varepsilon}=igcaplimits_{n=1}^{infty}{x: xgeqdfrac{1}{n}}, 並注意到

egin{aligned}             xi_nstackrel{a.s.}{longrightarrow}xi              Longleftrightarrow &Pleft(limlimits_{n	oinfty}xi_n=xi
ight)=1 \             Longleftrightarrow &P({omegainOmega: xi_n(omega)	oxi(omega)})=1 \             Longleftrightarrow &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=1}^{infty}                 igcaplimits_{i=n}^{infty}left[|xi_i-xi|<dfrac{1}{k}
ight]
ight)=1 \             Longleftrightarrow &Pleft(igcuplimits_{k=1}^{infty}igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqdfrac{1}{k}
ight]
ight)=0 \             Longleftrightarrow &Pleft(igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqdfrac{1}{k}
ight]
ight)=0, forall kgeq 1                 	ext{(次$sigma$可加性與單調性)} \             Longleftrightarrow &Pleft(igcaplimits_{n=1}^{infty}                 igcuplimits_{i=n}^{infty}left[|xi_i-xi|geqvarepsilon
ight]
ight)=0,                  forall varepsilon>0. square         end{aligned}

定理1.2 [依概率收斂的刻畫]

xi_nstackrel{P}{longrightarrow}xi             Longleftrightarrow             	ext{對${xi_n}$的任一子列${xi_n}$, 都存在子列${xi_{n_k}}_{kgeq 1}$, 使得}xi_{n_k}stackrel{a.s.}{longrightarrow}xi.

證明:Rightarrow 」: 假定 xi_nstackrel{P}{longrightarrow}xi, 根據定義, 對它的任一子列 {xi_{n}} 都有 xi_nstackrel{P}{longrightarrow}xi, 從而 forall kgeq 1, existsxi_{n_k}subset{xi_n}, 使得

egin{aligned}             &Pleft(|xi_{n_k}-xi|geqdfrac{1}{k}
ight)leqdfrac{1}{2^k} \             Longleftrightarrow & Pleft(igcuplimits_{k=m}^{infty}             left[|xi_{n_k}-xi|geqdfrac{1}{k}
ight]
ight)             leqsumlimits_{k=m}^{infty}dfrac{1}{2^k}=dfrac{1}{2^{m-1}}.         end{aligned}

forall varepsilon>0取m充分大, 使得 varepsilon>dfrac{1}{k}, k=m,m+1,cdots, 則對於 jgeq maxleft{m, leftlfloordfrac{1}{varepsilon}
ight
floor+1
ight},

   egin{aligned}             &Pleft(igcuplimits_{k=m}^{infty}left[|xi_{n_k}-xi|>varepsilon<br />
ight]<br />
ight)                 leqdfrac{1}{2^{j-1}}\             Longrightarrow & limlimits_{j	oinfty}             Pleft(igcuplimits_{k=j}^{infty}left[|xi_{n_k}-xi|geqvarepsilon<br />
ight]<br />
ight)=0 \             Longleftrightarrow &Pleft(igcaplimits_{j=1}^{infty}igcuplimits_{k=j}^{infty}             left[|xi_{n_k}-xi|geqvarepsilon<br />
ight]<br />
ight)=0.         end{aligned}

Leftarrow 」(反證)假設 xi_nstackrel{P}{longrightarrow}xi 不成立, 即 existsvarepsilon_0>0,delta>0 以及 {xi_{n_m}}subset{xi_n}, 使得

 P(|xi_{n_m}-xi|geqvarepsilon_0)>delta>0,forall ngeq 1.

(即這個子列不是依概率收斂). 對此子列而言,

 egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{m=k}^{infty}                 [|xi_{n_m}-xi|geqvarepsilon_0]
ight) \             =&limlimits_{k	oinfty}Pleft(igcuplimits_{m=k}^{infty}                 [|xi_{n_m}-xi|geqvarepsilon_0]
ight) \             geq&limsuplimits_{m	oinfty}P(|xi_{n_m}-xi|geqvarepsilon_0)>delta>0,         end{aligned}

xi_{n_k}stackrel{a.s.}{longrightarrow}xi 矛盾. QED

註:以後將會頻繁利用上面兩個定理, 尤其是幾乎必然收斂的刻畫. 利用這個刻畫再結合概率測度的從上(下?)連續性可以進行放縮.

例1.2 xi_nstackrel{P}{longrightarrow}xi, f: mathbb{R}	omathbb{R} 連續, 則f(xi_n)stackrel{P}{longrightarrow}f(xi).

證明: xi_nstackrel{P}{longrightarrow}xi , 則 forall{xi_{n}}subset{xi_n}, exists{xi_{n_k}}subset{xi_n}, 使得 xi_{n_k}stackrel{a.s.}{longrightarrow}xi. 由於 fin C(mathbb{R}),f(xi_{n_k})stackrel{a.s.}{longrightarrow}f(xi). (複合函數連續性, 可參考數學分析書), 即得 f(xi_n)stackrel{P}{longrightarrow}f(xi). QED

例1.3 如果 sumlimits_{n=1}^{infty}|xi_n-xi|_p^p<+infty,xi_nstackrel{a.s.}{longrightarrow}xi.

證明:根據幾乎必然收斂的刻畫, 以及概率測度的單調性、從上連續性, 可以把欲證命題進行等價轉化:

egin{aligned}             &xi_nstackrel{a.s.}{longrightarrow}xi\             Longleftrightarrow &forallvarepsilon>0, Pleft(igcaplimits_{k=1}^{infty}             igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0 \             Longleftrightarrow &forallvarepsilon>0, limlimits_{k	oinfty}                 Pleft(igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]<br />
ight)=0.         end{aligned}

利用Cauchy準則, 可得

sumlimits_{n=1}^{infty}|xi_n-xi|_p^p<+infty             Longleftrightarrow limlimits_{k	oinfty}sumlimits_{n=k}^{infty}|xi_n-xi|_p^p=0.

egin{aligned}             &Pleft(igcuplimits_{n=k}^{infty}[|xi_n-xi|geqvarepsilon]
ight) \             leq&sumlimits_{n=k}^{infty}P[|xi_n-xi|geqvarepsilon]	ext{ (次$sigma$可加性)}\             leq&sumlimits_{n=k}^{infty}dfrac{1}{varepsilon^p}E|xi_n-xi|^p	ext{ (Chebyshev)} \             &	o 0(k	oinfty) hspace{0.5cm}square         end{aligned}

2 Borel-Cantelli引理

有了前面的準備, 現在可以直接引入Borel-Cantelli引理了.

定理2.1 [Borel-Cantelli](1)我們有

  sumlimits_{n=1}^{infty}P(A_n)<+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=0.A_n 不可能發生無窮多次. (2)若 {A_n} 相互獨立, 則有   sumlimits_{n=1}^{infty}P(A_n)=+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1.A_n必然發生無窮多次.

證明: (1)只需注意到

egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight) \             =&limlimits_{k	oinfty}Pleft(igcuplimits_{n=k}^{infty}A_n
ight)              	ext{ (序列${igcuplimits_{n=k}^{infty}A_n}_{kgeq 1}$單調遞減)} \             leq&limlimits_{k	oinfty}sumlimits_{n=k}^{infty}P(A_n)              	ext{ (次$sigma$-可加性)} \             leq&0. 	ext{(利用條件以及Cauchy準則)}         end{aligned}

(2)欲證命題可以作如下轉化:

 egin{aligned}             &Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1 \             Longleftrightarrow &limlimits_{k	oinfty}Pleft(igcuplimits_{n=k}^{infty}A_n
ight)=1\             Longleftrightarrow &Pleft(igcuplimits_{n=k}^{infty}A_n
ight)=1, forall kgeq 1                 quad	ext{(單調遞減趨於1, 只能為1)} \             Longleftrightarrow &Pleft(igcaplimits_{n=k}^{infty}A_n^c
ight)=0, forall kgeq 1.                 quad	ext{(de Morgan)}         end{aligned}

事實上,

 egin{aligned}             0&leq Pleft(igcaplimits_{n=k}^{infty}A_n^c
ight) \             &=limlimits_{m	oinfty}Pleft(igcaplimits_{n=k}^mA_n^c
ight)                 quad	ext{(從下連續性)} \             &=limlimits_{m	oinfty}prodlimits_{n=k}^m(1-P(A_n))                 quad	ext{(獨立性)} \             &leqlimlimits_{m	oinfty}prodlimits_{n=k}^m(e^{-P(A_n)})                 quad(e^{-x}geq -x+1) \             &=expleft(-limlimits_{m	oinfty}sumlimits_{n=k}^mP(A_n)
ight)              =0.          end{aligned}

根據夾逼定理可以證明完畢. QED

注1:如果把相互獨立減弱為兩兩不相關或者兩兩負相關, 結論仍成立.

注2:Borel-Cantelli給出了幾乎處處收斂的充分條件(把上述 A_n	riangleq[|xi_n-xi|geqvarepsilon] ). 另外如果加上相互獨立又給出了個幾乎處處收斂的必要條件.

下面給出一個換了一種高大上表述的「推論」——Borel 0-1律.

推論2.2 [Borel 0-1律] {A_n} 相互獨立, 則

egin{aligned}                 &sumlimits_{n=1}^{infty}P(A_n)<inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=0. \                 &sumlimits_{n=1}^{infty}P(A_n)=+inftyLongrightarrow                     Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}A_n
ight)=1.         end{aligned}

3 Borel強大數定律的證明

定理3.1 [Borel強大數定律] mu_n 是事件A在n次獨立試驗中出現的次數, p是A在每次試驗中發生的概率, 則 dfrac{mu_n}{n}stackrel{a.s.}{longrightarrow}p.

證明:forallvarepsilon>0, 根據幾乎必然收斂的刻畫, 我們只需要證

  Pleft(igcaplimits_{k=1}^{infty}igcuplimits_{n=k}^{infty}             left[left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight]
ight)=0.

再根據Borel-Cantelli引理, 我們只需證

 sumlimits_{n=1}^{infty}Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight)<infty.

xi_i=left{egin{aligned}&1, &	ext{第i次A發生} \ &0, &	ext{第i次A不發生}end{aligned}
ight.,Exi_i=p, dfrac{mu_n}{n}-p=sumlimits_{i=1}^n(xi_i-p), 相當於作了中心化處理. 由於 {xi_n} 之間相互獨立, 則有

 E(xi_i-p)(xi_j-p)=E(xi_i-p)E(xi_j-p)=0, forall i
eq j.

根據Chebyshev不等式(推廣)以及題目所給的i.i.d條件,

 egin{aligned}         &Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight) \         leq&dfrac{1}{varepsilon^4}Eleft|dfrac{mu_n}{n}-p
ight|^4 \         =&dfrac{1}{varepsilon^4n^4}Eleft(sumlimits_{i=1}^n(xi_i-p)
ight)^4 \         =&dfrac{1}{varepsilon^4n^4}sumlimits_{i=1}^nsumlimits_{j=1}^nsumlimits_{k=1}^nsumlimits_{l=1}^n             E(xi_i-p)(xi_ji-p)(xi_k-p)(xi_l-p) \         =&dfrac{1}{varepsilon^4n^4}left[nE|xi_i-p|^4+mathrm{C}_n^2mathrm{C}_4^2E(xi_1-p)^2(xi_2-p)^2
ight] \         =&dfrac{1}{varepsilon^4n^4}left[npq(p^3+q^3)+3n(n-1)p^2q^2
ight] \         leq&dfrac{Cn^2}{varepsilon^4n^4}=dfrac{C}{n^2varepsilon^4}, 	ext{for some C}.         end{aligned}

從而

 sumlimits_{n=1}^{infty}Pleft(left|dfrac{mu_n}{n}-p
ight|geqvarepsilon
ight)         leqdfrac{C}{varepsilon^4}cdotdfrac{pi^2}{6}<+infty.

證明完畢. QED

推薦閱讀:

相關文章