直接點明:廣義能量就是哈密頓量

(點明但不予以證明,看懂文章這點就很顯然了,你可以自己試試看.)


讓我們先引入能量積分廣義能量積分的概念(不需要這段可以直接跳到符號▲處):

先直接點明三點:

i.二者都是在完整的的保守力系下引入的.(故使用保守系的方程 [frac{partial L}{partial {{q}_{alpha }}}=frac{d}{dt}frac{partial L}{partial {{{dot{q}}}_{alpha }}}] )

ii.在i的條件下若約束是穩定的就可以推出能量積分,若約束不穩定則可以的到形式相似的廣義能量積分.(穩定即約束不顯含時間t,或笛卡爾坐標不顯含時間,即[{{vec{r}}_{i}}={{vec{r}}_{i}}left( {{q}_{1}},{{q}_{2}},...,{{q}_{s}} 
ight)] )

iii.後面基本都會涉及到這一等式: [sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}=frac{d}{dt}T] ,這實際上要求 [frac{partial T}{partial t}=0] .穩定約束自然不用說: [frac{partial {{{vec{r}}}_{i}}}{partial t}=0] 說明 T 肯定不顯含時間; 至於非穩定約束雖說 [frac{partial {{{vec{r}}}_{i}}}{partial t}
e 0] ,但還是要求 [frac{partial T}{partial t}=0] 才能給出廣義能量的表達式.


好的現在開始只有完整的保守力系這一條件:

先將坐標改為廣義坐標: [{{{dot{vec{r}}}}_{i}}=sumlimits_{alpha =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}{{{dot{q}}}_{a}}}+frac{partial {{{vec{r}}}_{i}}}{partial t}] #s為自由度數

那麼動能 T 就可展開為下面三項:

[egin{align}   & T=sumlimits_{i=1}^{n}{frac{1}{2}{{m}_{i}}{{{dot{vec{r}}}}_{i}}^{2}}=sumlimits_{i=1}^{n}{frac{1}{2}{{m}_{i}}left( sumlimits_{alpha =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}{{{dot{q}}}_{a}}}+frac{partial {{{vec{r}}}_{i}}}{partial t} 
ight)left( sumlimits_{eta =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{eta }}}{{{dot{q}}}_{eta }}}+frac{partial {{{vec{r}}}_{i}}}{partial t} 
ight)} \   &                   =sumlimits_{i=1}^{n}{frac{1}{2}{{m}_{i}}left[ sumlimits_{alpha =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}{{{dot{q}}}_{a}}}cdot sumlimits_{eta =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{eta }}}{{{dot{q}}}_{eta }}}+2sumlimits_{alpha =1}^{s}{frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}{{{dot{q}}}_{a}}}cdot frac{partial {{{vec{r}}}_{i}}}{partial t}+{{left( frac{partial {{{vec{r}}}_{i}}}{partial t} 
ight)}^{2}} 
ight]} \   &                   =sumlimits_{egin{smallmatrix}   alpha =1 \   eta =1  end{smallmatrix}}^{s}{frac{1}{2}sumlimits_{i=1}^{n}{{{m}_{i}}frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}cdot frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{eta }}}{{{dot{q}}}_{eta }}{{{dot{q}}}_{a}}}}+sumlimits_{alpha =1}^{s}{sumlimits_{i=1}^{n}{{{m}_{i}}frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}cdot frac{partial {{{vec{r}}}_{i}}}{partial t}{{{dot{q}}}_{a}}}}+frac{1}{2}sumlimits_{i=1}^{n}{{{m}_{i}}{{left( frac{partial {{{vec{r}}}_{i}}}{partial t} 
ight)}^{2}}} \   &                   =sumlimits_{egin{smallmatrix}   alpha =1 \   eta =1  end{smallmatrix}}^{s}{frac{1}{2}{{a}_{alpha eta }}{{{dot{q}}}_{eta }}{{{dot{q}}}_{a}}}+sumlimits_{alpha =1}^{s}{{{a}_{alpha o}}{{{dot{q}}}_{a}}}+frac{1}{2}{{a}_{oo}}={{T}_{2}}+{{T}_{1}}+{{T}_{0}} \  end{align}]

[{{T}_{2}},{{T}_{1}},{{T}_{0}}] 即分別為廣義速度的二次項,一次項和零次項.#這裡並不要求保守系

其中簡寫記號的定義: [left{ egin{align}   & {{a}_{alpha eta }}=sumlimits_{i=1}^{n}{{{m}_{i}}frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}cdot frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{eta }}}} \   & {{a}_{alpha o}}=sumlimits_{i=1}^{n}{{{m}_{i}}frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}cdot frac{partial {{{vec{r}}}_{i}}}{partial t}} \   & {{a}_{oo}}=sumlimits_{i=1}^{n}{{{m}_{i}}frac{partial {{{vec{r}}}_{i}}}{partial t}cdot frac{partial {{{vec{r}}}_{i}}}{partial t}} \  end{align} 
ight.]

接下來對保守系的方程 [frac{partial L}{partial {{q}_{alpha }}}=frac{d}{dt}frac{partial L}{partial {{{dot{q}}}_{alpha }}}] 做一些處理:

其中 [L=T-V]

T 如上面分析是廣義坐標 [q] 和廣義速度 [{dot{q}}] 和時間 t 的函數,然而實際上後面的推導都要求 T 不顯含時間 t .

V 則僅僅是廣義坐標 q 的函數,這是不難理解的,因為勢能是形容系統各個部分相互作用的函數,所以沒有外場的話將僅僅由質點系內質點的相對位置決定.

L 拆開並乘上 [{{{dot{q}}}_{alpha }}]可得[frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}-frac{partial V}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}=frac{d}{dt}frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }}]

對等式右邊使用分部微分 [frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}-frac{partial V}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}=frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)-frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }}]

整理後對 alpha 求和 [sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{frac{partial V}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}}=sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}]


從這裡開始準備推導能量積分,故添加穩定約束這一條件:

穩定約束 [Rightarrow frac{partial {{{vec{r}}}_{i}}}{partial t}=0Rightarrow T={{T}_{2}}] 即動能是廣義速度的二次齊次函數.

這裡要清楚一個齊次函數的歐拉定理: [{{T}_{2}}][{dot{q}}] 的二次齊次函數 [Rightarrow frac{partial {{T}_{2}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }}=2{{T}_{2}}]

#上述定理最後會給出證明

則式子 [sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{frac{partial V}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}}=sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}]

可以寫為 [frac{d}{dt}{{T}_{2}}-frac{d}{dt}V=frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial {{T}_{2}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}=frac{d}{dt}left( 2{{T}_{2}} 
ight)]

整理得到[frac{d}{dt}left( {{T}_{2}}+V 
ight)=0Rightarrow {{T}_{2}}+V={{E}_{const}}]這就是能量積分

不難看出這對應著牛頓力學的機械能守恆.

總結能量積分存在條件:穩定約束的完整保守系統(勢能不顯含時)


從這裡開始準備推導廣義能量積分,故添加非穩定約束這一條件:

非穩定約束 [Rightarrow frac{partial {{{vec{r}}}_{i}}}{partial t}
e 0Rightarrow T={{T}_{2}}+{{T}_{1}}+{{T}_{0}}]

則式子 [sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{frac{partial V}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}}=sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}]

可以寫為[frac{d}{dt}T-frac{d}{dt}V=frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}] #實際上這裡要求了 T 不顯含 t

分析等號右邊:[egin{align}   & frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}=frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial {{T}_{2}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}+frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial {{T}_{1}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}+frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial {{T}_{0}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)} \   & frac{d}{dt}sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}=frac{d}{dt}left( 2{{T}_{2}} 
ight)+frac{d}{dt}{{T}_{1}}+0 \  end{align}]

綜上各式得到: [frac{d}{dt}left( {{T}_{2}}-{{T}_{0}}+V 
ight)=0Rightarrow {{T}_{2}}-{{T}_{0}}+V={{H}_{const}}] 這就是廣義能量積分

=======================

可以看出廣義能量積分只是形式上和能量積分一樣,而 [{{T}_{2}}-{{T}_{0}}] 不是動量 [{{H}_{const}}] 也不是能量.

廣義能量積分的存在條件:完整保守系統下 T 是廣義速度的二次非齊次函數且不顯含 t.(排除能量積分這一情況,勢能不顯含時)

那麼達到上述條件的系統大概有如下幾種情況:

i.是非穩定約束,但勻速(或勻角速度).就是說可以將坐標表達為: [{{{vec{r}}}_{i}}={{{vec{v}}}_{0}}t+{vec{r}}left( {{q}_{1}},{{q}_{2}},...,{{q}_{s}} 
ight)] 這麼一來雖然 [frac{partial {{{vec{r}}}_{i}}}{partial t}=const
e 0] 但卻能同時保證 [frac{partial T}{partial t}=0]T 是廣義速度的二次非齊次函數.

ii.雖然 [{{{vec{r}}}_{i}},frac{partial {{{vec{r}}}_{i}}}{partial t},frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}] 都顯含時間, 但是有可能在 [frac{partial {{{vec{r}}}_{i}}}{partial {{q}_{alpha }}}][frac{partial {{{vec{r}}}_{i}}}{partial t}] 在內積求和的過程中抵消了 t 的這種情況也能滿足上述條件.

#下面括弧內的內容是個人迷思, 請批判性的閱讀.

[對應著牛頓力學的什麼呢? 感覺上應該是取約束參考系的機械能守恆, 因為 [{{T}_{2}}]從表達式來看就知道是相對約束靜止的動參考系的動能表達式,而 V 則是地面靜止參考系下的勢能,所以可以考慮 [-{{T}_{0}}] 作為附加項看作勢能項的一部分,這兩項的和 [{V}=-{{T}_{0}}+V] 或可看作動參考系下的勢能項(按照這門學科的命名風格,或該稱呼它廣義勢能?).動參考系本身具有慣性力這一附加項,所以 [-{{T}_{0}}]看作是慣性力對應的勢能.這樣一來的話自然會有一個類似於機械能守恆的式子.也就是說廣義能量反映的是動參考系下的機械能守恆.這還算是蠻符合直覺的,因為在動參考系下,約束就是穩定約束了.你可能會說非穩定約束是勻速情況不具有慣性力,但這其實沒有產生矛盾,從定義式 [{{T}_{0}}=frac{1}{2}sumlimits_{i=1}^{n}{{{m}_{i}}{{left( frac{partial {{{vec{r}}}_{i}}}{partial t} 
ight)}^{2}}}] 就可以看出來,其實這一項此時是個常數,算不算上他最後都會得到一個守恆量.]


▲下面將嘗試討論非保守系下的廣義能量的意義:

那自然就要用回基本形式的方程了,即 [frac{d}{dt}frac{partial T}{partial {{{dot{q}}}_{alpha }}}-frac{partial T}{partial {{q}_{alpha }}}={{Q}_{alpha }}]

[{{Q}_{alpha }}] 是廣義主動力,現在將其分為保守部分和非保守部分 [{{Q}_{alpha }}=-frac{partial V}{partial {{q}_{alpha }}}+{{{{Q}}}_{a}}]

得到方程為 [frac{d}{dt}frac{partial T}{partial {{{dot{q}}}_{alpha }}}-frac{partial T}{partial {{q}_{alpha }}}=-frac{partial V}{partial {{q}_{alpha }}}+{{{{Q}}}_{a}}] ,和前面比僅多出一項 [{{{{Q}}}_{a}}]

按照前面整理可以得到:[sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}+frac{d}{dt}V=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}]


從這裡開始準備推導穩定約束這一條件下的能量概念:

穩定約束 [Rightarrow frac{partial {{{vec{r}}}_{i}}}{partial t}=0Rightarrow T={{T}_{2}}] 即動能是廣義速度的二次齊次函數.

則式子 [sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial {{T}_{2}}}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{left( frac{partial {{T}_{2}}}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial {{T}_{2}}}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}+frac{d}{dt}V=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}]

可以寫為 [frac{d}{dt}left( 2{{T}_{2}} 
ight)-frac{d}{dt}{{T}_{2}}+frac{d}{dt}V=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}Rightarrow frac{d}{dt}left( {{T}_{2}}+V 
ight)=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}]

[still], 我們還是默認了 T 不顯含 t (實在是覺得重要,所以每次啰嗦了一下.)

[dleft( T+V 
ight)=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}dt] 不難看出這實際上對應著牛頓力學的功能原理.


[Lastly !] 討論到整篇文章的標題了,非保守系的廣義能量:

先加入條件非穩定約束 [Rightarrow frac{partial {{{vec{r}}}_{i}}}{partial t}
e 0Rightarrow T={{T}_{2}}+{{T}_{1}}+{{T}_{0}}]

則式子 [sumlimits_{alpha =1}^{s}{frac{d}{dt}left( frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }} 
ight)}-sumlimits_{alpha =1}^{s}{left( frac{partial T}{partial {{q}_{alpha }}}{{{dot{q}}}_{alpha }}+frac{partial T}{partial {{{dot{q}}}_{alpha }}}{{{ddot{q}}}_{alpha }} 
ight)}+frac{d}{dt}V=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}]

可以寫為 [frac{d}{dt}left( 2{{T}_{2}} 
ight)+frac{d}{dt}{{T}_{1}}-frac{d}{d}left( {{T}_{2}}+{{T}_{	ext{1}}}	ext{+}{{T}_{0}} 
ight)+frac{d}{dt}V=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}]

[dleft( {{T}_{2}}-{{T}_{0}}+V 
ight)=sumlimits_{alpha =1}^{s}{{{{{Q}}}_{a}}{{{dot{q}}}_{alpha }}}dt]

[well, it still works], 通過前面的長篇大論不難看出這是對應著動參考系下的功能原理.


關於前面說好的齊次函數的歐拉定理的證明:

若滿足式子 [fleft( a{{x}_{1}},a{{x}_{2}},...,a{{x}_{s}} 
ight)={{a}^{n}}fleft( {{x}_{1}},{{x}_{2}},...,{{x}_{s}} 
ight)]

則稱 f[{{x}_{alpha }}] 的n次齊次函數.

對於 [gleft( x 
ight)=a{{x}^{n}}]

不難想像式子 [frac{partial g}{partial x}=nfrac{g}{x}] 是成立的,當然了, [frac{partial g}{partial x}x=ng] 也成立

那麼很自然的推廣到 [fleft( {{x}_{1}},{{x}_{2}},...,{{x}_{s}} 
ight)]

就有 [sumlimits_{alpha =1}^{s}{frac{partial f}{partial {{x}_{alpha }}}{{x}_{alpha }}}=nf] 好的這就是著名的齊次函數的歐拉定理. [done here].

#2019.02.01更新一個證明方法(總覺得上面那個到底有些敷衍):

齊次函數滿足條件:[fleft( a{{x}_{1}},a{{x}_{2}},...,a{{x}_{s}} 
ight)={{a}^{n}}fleft( {{x}_{1}},{{x}_{2}},...,{{x}_{s}} 
ight)]

式子兩邊對 [a] 求導得到: [sumlimits_{alpha =1}^{s}{frac{partial fleft( a{{x}_{1}},a{{x}_{2}},...,a{{x}_{s}} 
ight)}{partial a{{x}_{alpha }}}}cdot {{x}_{alpha }}=n{{a}^{n-1}}fleft( {{x}_{1}},{{x}_{2}},...,{{x}_{s}} 
ight)]

接下來令 [a=1] 得到: [sumlimits_{alpha =1}^{s}{frac{partial f}{partial {{x}_{alpha }}}}cdot {{x}_{alpha }}=nf]

(個人覺得這個證明還蠻有趣的,可能還是見識短淺吧hhh)

推薦閱讀:

相关文章