先來證明一個命題:

命題

Sigma=left[ egin{array}{r}( alpha_{1},alpha_{1})&(alpha_{1},alpha_{2})&...&(alpha_{1},alpha_{m})\(alpha_{2},alpha_{1})&(alpha_{2},alpha_{2})&...&(alpha_{2},alpha_{m})\ vdots        & vdots         &&vdots        \  (alpha_{m},alpha_{1})&(alpha_{m},alpha_{2})&...&(alpha_{m},alpha_{m}) end{array} 
ight]

left| Sigma 
ight|
e0 成立的充分必要條件是 alpha_{1}, alpha_{2},…, alpha_{m} 線性無關.

證明

充分性:

alpha=x_{1}alpha_{1}+...+x_{m}alpha_{m} ,則

(alpha,alpha)=left[ egin{array}{r}  x_{1}& ...& x_{m} end{array} 
ight]Sigmaleft[ egin{array}{r}  x_{1}\ vdots   \ x_{m} end{array} 
ight]

是一個二次型. alpha_{1}, alpha_{2},…, alpha_{m} 線性無關的充要條件是對任意不全為 0 的 x_{1}, x_{2},…,x_{m} ,都有 alpha
e0 ,即有

(alpha,alpha)>0

Sigma 是正定矩陣,當然 left| Sigma 
ight|
e0 .

必要性:

left| Sigma
ight|
e0 成立,若有

sum_{k=1}^{m}{x_{k}alpha_{k}}=0

則有

left(sum_{i=1}^{m}{x_{i}alpha_{i}},alpha_{j} 
ight)=sum_{k=1}^{m}{x_{i}left({alpha_{i}},alpha_{j} 
ight)},j=1,...,m

得到方程組,

Sigmaleft[ egin{array}{r}  x_{1}\ vdots   \ x_{m} end{array} 
ight]=0

由於 left| Sigma 
ight|
e0 ,於是該齊次方程只有零解,即 x_{1}=x_{2}=...=x_{m}=0 ,故 alpha_{1}, alpha_{2},…, alpha_{m} 線性無關.

Q. E. D

所以協方差矩陣 Sigma 可逆的關鍵在於 alpha_{1}, alpha_{2},…, alpha_{m} 線性無關,而根據 Gauss-Markov 條件alpha_{1}, alpha_{2},…,alpha_{m} 都是獨立同分布的,獨立必然不相關,不相關即為兩兩正交,正交必然線性無關,所以保證了協方差矩陣 Sigma 可逆性.


推薦閱讀:
相关文章