第六章 黑 洞

黑洞這一術語是不久以前才出現的。它是1969年美國科學家約翰·惠勒為形象描述至少可回溯到200年前的這個思想時所杜撰的名字。那時候,共有兩種光理論:一種是牛頓贊成的光的微粒說;另一種是光的波動說。我們現在知道,實際上這兩者都是正確的。由於量子力學的波粒二象性,光既可認為是波,也可認為是粒子。在光的波動說中,不清楚光對引力如何響應。但是如果光是由粒子組成的,人們可以預料,它們正如同炮彈、火箭和行星那樣受引力的影響。起先人們以為,光粒子無限快地運動,所以引力不可能使之慢下來,但是羅麥關於光速度有限的發現表明引力對之可有重要效應。

1783年,劍橋的學監約翰·米歇爾在這個假定的基礎上,在《倫敦皇家學會哲學學報》上發表了一篇文章。他指出,一個質量足夠大並足夠緊緻的恆星會有如此強大的引力場,以致於連光線都不能逃逸——任何從恆星表面發出的光,還沒到達遠處即會被恆星的引力吸引回來。米歇爾暗示,可能存在大量這樣的恆星,雖然會由於從它們那裡發出的光不會到達我們這兒而使我們不能看到它們,但我們仍然可以感到它們的引力的吸引作用。這正是我們現在稱為黑洞的物體。它是名符其實的——在空間中的黑的空洞。幾年之後,法國科學家拉普拉斯侯爵顯然獨自提出和米歇爾類似的觀念。非常有趣的是,拉普拉斯只將此觀點納入他的《世界系統》一書的第一版和第二版中,而在以後的版本中將其刪去,可能他認為這是一個愚蠢的觀念。(此外,光的微粒說在19世紀變得不時髦了;似乎一切都可以以波動理論來解釋,而按照波動理論,不清楚光究竟是否受到引力的影響。)

事實上,因為光速是固定的,所以,在牛頓引力論中將光類似炮彈那樣處理實在很不協調。(從地面發射上天的炮彈由於引力而減速,最後停止上升並折回地面;然而,一個光子必須以不變的速度繼續向上,那麼牛頓引力對於光如何發生影響呢?)直到1915年愛因斯坦提出廣義相對論之前,一直沒有關於引力如何影響光的協調的理論。甚至又過了很長時間,這個理論對大質量恆星的含意才被理解。

為了理解黑洞是如何形成的,我們首先需要理解一個恆星的生命周期。起初,大量的氣體(大部分為氫)受自身的引力吸引,而開始向自身坍縮而形成恆星。當它收縮時,氣體原子相互越來越頻繁地以越來越大的速度碰撞——氣體的溫度上升。最後,氣體變得如此之熱,以至於當氫原子碰撞時,它們不再彈開而是聚合形成氦。如同一個受控氫彈爆炸,反應中釋放出來的熱使得恆星發光。這增添的熱又使氣體的壓力升高,直到它足以平衡引力的吸引,這時氣體停止收縮。這有一點像氣球——內部氣壓試圖使氣球膨脹,橡皮的張力試圖使氣球縮小,它們之間存在一個平衡。從核反應發出的熱和引力吸引的平衡,使恆星在很長時間內維持這種平衡。然而,最終恆星會耗盡了它的氫和其他核燃料。貌似大謬,其實不然的是,恆星初始的燃料越多,它則燃盡得越快。這是因為恆星的質量越大,它就必須越熱才足以抵抗引力。而它越熱,它的燃料就被用得越快。我們的太陽大概足夠再燃燒50多億年,但是質量更大的恆星可以在1億年這麼短的時間內用盡其燃料, 這個時間尺度比宇宙的年齡短得多了。當恆星耗盡了燃料,它開始變冷並開始收縮。隨後發生的情況只有等到本世紀20年代末才初次被人們理解。

1928年,一位印度研究生——薩拉瑪尼安·強德拉塞卡——乘船來英國劍橋跟英國天文學家阿瑟·愛丁頓爵士(一位廣義相對論家)學習。(據記載,在本世紀20年代初有一位記者告訴愛丁頓,說他聽說世界上只有三個人能理解廣義相對論,愛丁頓停了一下,然後回答:「我正在想這第三個人是誰」。)在他從印度來英的旅途中,強德拉塞卡算出在耗盡所有燃料之後,多大的恆星可以繼續對抗自己的引力而維持自己。這個思想是說:當恆星變小時,物質粒子靠得非常近,而按照泡利不相容原理,它們必須有非常不同的速度。這使得它們互相散開並企圖使恆星膨脹。一顆恆星可因引力作用和不相容原理引起的排斥力達到平衡而保持其半徑不變,正如在它的生命的早期引力被熱所平衡一樣。

然而,強德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著,恆星變得足夠緊緻之時,由不相容原理引起的排斥力就會比引力的作用小。強德拉塞卡計算出;一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力。(這質量現在稱為強德拉塞卡極限。)蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也得到了類似的發現。

這對大質量恆星的最終歸宿具有重大的意義。如果一顆恆星的質量比強德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英哩和密度為每立方英寸幾百噸的「白矮星」。白矮星是它物質中電子之間的不相容原理排斥力所支持的。我們觀察到大量這樣的白矮星。第一顆被觀察到的是繞著夜空中最亮的恆星——天狼星轉動的那一顆。

蘭道指出,對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支持。所以它們被叫做中子星。它們的半徑只有10英哩左右,密度為每立方英寸幾億噸。在中子星被第一次預言時,並沒有任何方法去觀察它。實際上,很久以後它們才被觀察到。

另一方面,質量比強德拉塞卡極限還大的恆星在耗盡其燃料時,會出現一個很大的問題:在某種情形下,它們會爆炸或拋出足夠的物質,使自己的質量減少到極限之下,以避免災難性的引力坍縮。但是很難令人相信,不管恆星有多大,這總會發生。怎麼知道它必須損失重量呢?即使每個恆星都設法失去足夠多的重量以避免坍縮,如果你把更多的質量加在白矮星或中子星上,使之超過極限將會發生什麼?它會坍縮到無限密度嗎?愛丁頓為此感到震驚,他拒絕相信強德拉塞卡的結果。愛丁頓認為,一顆恆星不可能坍縮成一點。這是大多數科學家的觀點:愛因斯坦自己寫了一篇論文,宣布恆星的體積不會收縮為零。其他科學家,尤其是他以前的老師、恆星結構的主要權威——愛丁頓的敵意使強德拉塞卡拋棄了這方面的工作,轉去研究諸如恆星團運動等其他天文學問題。然而,他獲得1983年諾貝爾獎,至少部分原因在於他早年所做的關於冷恆星的質量極限的工作。

強德拉塞卡指出,不相容原理不能夠阻止質量大於強德拉塞卡極限的恆星發生坍縮。但是,根據廣義相對論,這樣的恆星會發生什麼情況呢?這個問題被一位年輕的美國人羅伯特·奧本海默於1939年首次解決。然而,他所獲得的結果表明,用當時的望遠鏡去觀察不會再有任何結果。以後,因第二次世界大戰的干擾,奧本海默本人非常密切地捲入到原子彈計劃中去。戰後,由於大部分科學家被吸引到原子和原子核尺度的物理中去,因而引力坍縮的問題被大部分人忘記了。但在本世紀60年代,現代技術的應

圖6.1用使得天文觀測範圍和數量大大增加, 重新激起人們對天文學和宇

宙學的大尺度問題的興趣。奧本海默的工作被重新發現,並被一些人推廣。

現在,我們從奧本海默的工作中得到一幅這樣的圖象:恆星的引力場改變了光線的路徑,使之和原先沒有恆星情況下的路徑不一樣。光錐是表示光線從其頂端發出後在空間——時間裡傳播的軌道。光錐在恆星表面附近稍微向內偏折,在日食時觀察遠處恆星發出的光線,可以看到這種偏折現象。當該恆星收縮時,其表面的引力場變得很強,光線向內偏折得更多,從而使得光線從恆星逃逸變得更為困難。對於在遠處的觀察者而言,光線變得更黯淡更紅。最後,當這恆星收縮到某一臨界半徑時,表面的引力場變得如此之強,使得光錐向內偏折得這麼多,以至於光線再也逃逸不出去(圖6.1) 。根據相對論,沒有東西會走得比光還快。這樣,如果光都逃逸不出來,其他東西更不可能逃逸,都會被引力拉回去。也就是說,存在一個事件的集合或空間——時間區域,光或任何東西都不可能從該區域逃逸而到達遠處的觀察者。現在我們將這區域稱作黑洞,將其邊界稱作事件視界,它和剛好不能從黑洞逃逸的光線的軌跡相重合。

當你觀察一個恆星坍縮並形成黑洞時,為了理解你所看到的情況,切記在相對論中沒有絕對時間。每個觀測者都有自己的時間測量。由於恆星的引力場,在恆星上某人的時間將和在遠處某人的時間不同。假定在坍縮星表面有一無畏的航天員和恆星一起向內坍縮,按照他的表,每一秒鐘發一信號到一個繞著該恆星轉動的空間飛船上去。在他的表的某一時刻,譬如11點鐘,恆星剛好收縮到它的臨界半徑,此時引力場強到沒有任何東西可以逃逸出去,他的信號再也不能傳到空間飛船了。當11點到達時,他在空間飛船中的夥伴發現,航天員發來的一串信號的時間間隔越變越長。但是這個效應在10點59分59秒之前是非常微小的。在收到10點59分58秒和10點59分59秒發出的兩個信號之間,他們只需等待比一秒鐘稍長一點的時間,然而他們必須為11點發出的信號等待無限長的時間。按照航天員的手錶,光波是在10點59分59秒和11點之間由恆星表面發出;從空間飛船上看,那光波被散開到無限長的時間間隔里。在空間飛船上收到這一串光波的時間間隔變得越來越長,所以恆星來的光顯得越來越紅、越來越淡,最後,該恆星變得如此之朦朧,以至於從空間飛船上再也看不見它,所餘下的只是空間中的一個黑洞。然而,此恆星繼續以同樣的引力作用到空間飛船上,使飛船繼續繞著所形成的黑洞旋轉。

但是由於以下的問題,使得上述情景不是完全現實的。你離開恆星越遠則引力越弱,所以作用在這位無畏的航天員腳上的引力總比作用到他頭上的大。在恆星還未收縮到臨界半徑而形成事件視界之前,這力的差就已經將我們的航天員拉成義大利麵條那樣,甚至將他撕裂!然而,我們相信,在宇宙中存在質量大得多的天體,譬如星系的中心區域,它們遭受到引力坍縮而產生黑洞;一位在這樣的物體上面的航天員在黑洞形成之前不會被撕開。事實上,當他到達臨界半徑時,不會有任何異樣的感覺,甚至在通過永不回返的那一點時,都沒注意到。但是,隨著這區域繼續坍縮,只要在幾個鐘頭之內,作用到他頭上和腳上的引力之差會變得如此之大,以至於再將其撕裂。

羅傑·彭羅斯和我在1965年和1970年之間的研究指出,根據廣義相對論,在黑洞中必然存在無限大密度和空間——時間曲率的奇點。這和時間開端時的大爆炸相當類似,只不過它是一個坍縮物體和航天員的時間終點而已。在此奇點,科學定律和我們預言將來的能力都失效了。然而,任何留在黑洞之外的觀察者,將不會受到可預見性失效的影響,因為從奇點出發的不管是光還是任何其他信號都不能到達他那兒。這令人驚奇的事實導致羅傑·彭羅斯提出了宇宙監督猜測,它可以被意譯為:「上帝憎惡裸奇點。」換言之,由引力坍縮所產生的奇點只能發生在像黑洞這樣的地方,在那兒它被事件視界體面地遮住而不被外界看見。嚴格地講,這是所謂弱的宇宙監督猜測:它使留在黑洞外面的觀察者不致受到發生在奇點處的可預見性失效的影響,但它對那位不幸落到黑洞里的可憐的航天員卻是愛莫能助。

廣義相對論方程存在一些解,這些解使得我們的航天員可能看到裸奇點。他也許能避免撞到奇點上去,而穿過一個「蟲洞」來到宇宙的另一區域。看來這給空間——時間內的旅行提供了巨大的可能性。但是不幸的是,所有這些解似乎都是非常不穩定的;最小的干擾,譬如一個航天員的存在就會使之改變,以至於他還沒能看到此奇點,就撞上去而結束了他的時間。換言之,奇點總是發生在他的將來,而從不會在過去。強的宇宙監督猜測是說,在一個現實的解里,奇點總是或者整個存在於將來(如引力坍縮的奇點),或者整個存在於過去(如大爆炸)。因為在接近裸奇點處可能旅行到過去,所以宇宙監督猜測的某種形式的成立是大有希望的。這對科學幻想作家而言是不錯的,它表明沒有任何一個人的生命曾經平安無事:有人可以回到過去,在你投胎之前殺死你的父親或母親!

事件視界,也就是空間——時間中不可逃逸區域的邊界,正如同圍繞著黑洞的單向膜:物體,譬如不謹慎的航天員,能通過事件視界落到黑洞里去,但是沒有任何東西可以通過事件視界而逃離黑洞。(記住事件視界是企圖逃離黑洞的光的空間——時問軌道,沒有任何東西可以比光運動得更快。)人們可以將詩人但丁針對地獄入口所說的話恰到好處地用於事件視界:「從這兒進去的人必須拋棄一切希望。」任何東西或任何人一旦進入事件視界,就會很快地到達無限緻密的區域和時間的終點。

廣義相對論預言,運動的重物會導致引力波的輻射,那是以光的速度傳播的空間——時間曲率的漣漪。引力波和電磁場的漣漪光波相類似,但是要探測到它則困難得多。就像光一樣,它帶走了發射它們的物體的能量。因為任何運動中的能量都會被引力波的輻射所帶走,所以可以預料,一個大質量物體的系統最終會趨向於一種不變的狀態。(這和扔一塊軟木到水中的情況相當類似,起先翻上翻下折騰了好一陣,但是當漣漪將其能量帶走,就使它最終平靜下來。)例如,繞著太陽公轉的地球即產生引力波。其能量損失的效應將改變地球的軌道,使之逐漸越來越接近太陽,最後撞到太陽上,以這種方式歸於最終不變的狀態。在地球和太陽的情形下能量損失率非常小——大約只能點燃一個小電熱器, 這意味著要用大約1干億億億年地球才會和太陽相撞,沒有必要立即去為之擔憂!地球軌道改變的過程極其緩慢,以至於根本觀測不到。但幾年以前,在稱為PSR1913+16(PSR表示「脈衝星」,一種特別的發射出無線電波規則脈衝的中子星)的系統中觀測到這一效應。此系統包含兩個互相圍繞著運動的中子星,由於引力波輻射,它們的能量損失,使之相互以螺旋線軌道靠近。

在恆星引力坍縮形成黑洞時,運動會更快得多,這樣能量被帶走的速率就高得多。所以不用太長的時間就會達到不變的狀態。這最終的狀態將會是怎樣的呢?人們會以為它將依賴於形成黑洞的恆星的所有的複雜特徵——不僅僅它的質量和轉動速度,而且恆星不同部分的不同密度以及恆星內氣體的複雜運動。如果黑洞就像坍縮形成它們的原先物體那樣變化多端,一般來講,對之作任何預言都將是非常困難的。

然而,加拿大科學家外奈·伊斯雷爾(他生於柏林,在南非長大,在愛爾蘭得到博士)在1967年使黑洞研究發生了徹底的改變。他指出,根據廣義相對論,非旋轉的黑洞必須是非常簡單、完美的球形;其大小隻依賴於它們的質量,並且任何兩個這樣的同質量的黑洞必須是等同的。事實上,它們可以用愛因斯坦的特解來描述,這個解是在廣義相對論發現後不久的1917年卡爾·施瓦茲席爾德找到的。一開始,許多人(其中包括伊斯雷爾自己)認為,既然黑洞必須是完美的球形,一個黑洞只能由一個完美球形物體坍縮而形成。所以,任何實際的恆星——從來都不是完美的球形——只會坍縮形成一個裸奇點。

然而,對於伊斯雷爾的結果,一些人,特別是羅傑·彭羅斯和約翰·惠勒提倡一種不同的解釋。他們論證道,牽涉恆星坍縮的快速運動表明,其釋放出來的引力波使之越來越近於球形,到它終於靜態時,就變成準確的球形。按照這種觀點,任何非旋轉恆星,不管其形狀和內部結構如何複雜,在引力坍縮之後都將終結於一個完美的球形黑洞,其大小隻依賴於它的質量。這種觀點得到進一步的計算支持,並且很快就為大家所接受。

伊斯雷爾的結果只處理了由非旋轉物體形成的黑洞。1963年,紐西蘭人羅伊·克爾找到了廣義相對論方程的描述旋轉黑洞的一族解。這些「克爾」黑洞以恆常速度旋轉,其大小與形狀只依賴於它們的質量和旋轉的速度。如果旋轉為零,黑洞就是完美的球形,這解就和施瓦茲席爾德解一樣。如果有旋轉,黑洞的赤道附近就鼓出去(正如地球或太陽由於旋轉而鼓出去一樣),而旋轉得越快則鼓得越多。由此人們猜測,如將伊斯雷爾的結果推廣到包括旋轉體的情形,則任何旋轉物體坍縮形成黑洞後,將最後終結於由克爾解描述的一個靜態。

1970年,我在劍橋的一位同事和研究生同學布蘭登·卡特為證明此猜測跨出了第一步。他指出,假定一個穩態的旋轉黑洞,正如一個自旋的陀螺那樣,有一個對稱軸,則它的大小和形狀,只由它的質量和旋轉速度所決定。然後我在1971年證明了,任何穩態旋轉黑洞確實有這樣的一個對稱軸。,最後,在國王學院任教的大衛·羅賓遜利用卡特和我的結果證明了這猜測是對的:這樣的黑洞確實必須是克爾解。所以在引力坍縮之後,一個黑洞必須最終演變成一種能夠旋轉、但是不能搏動的態。並且它的大小和形狀,只決定於它的質量和旋轉速度,而與坍縮成為黑洞的原先物體的性質無關。此結果以這樣的一句諺語表達而成為眾所周知:「黑洞沒有毛。」「無毛」定理具有巨大的實際重要性,因為它極大地限制了黑洞的可能類型。所以,人們可以製造可能包含黑洞的物體的具體模型,再將此模型的預言和觀測相比較。因為在黑洞形成之後,我們所能測量的只是有關坍縮物體的質量和旋轉速度,所以「無毛」定理還意味著,有關這物體的非常大量的信息,在黑洞形成時損失了。下一章我們將會看到它的意義。

黑洞是科學史上極為罕見的情形之一,在沒有任何觀測到的證據證明其理論是正確的情形下,作為數學的模型被發展到非常詳盡的地步。的確,這經常是反對黑洞的主要論據:你怎麼能相信一個其依據只是基於令人懷疑的廣義相對論的計算的對象呢?然而,1963年,加利福尼亞的帕羅瑪天文台的天文學家馬丁·施密特測量了在稱為3C273(即是劍橋射電源編目第三類的273號)射電源方向的一個黯淡的類星體的紅移。他發現引力場不可能引起這麼大的紅移——如果它是引力紅移,這類星體必須具有如此大的質量,並離我們如此之近,以至於會干擾太陽系中的行星軌道。這暗示此紅移是由宇宙的膨脹引起的,進而表明此物體離我們非常遠。由於在這麼遠的距離還能被觀察到,它必須非常亮,也就是必須輻射出大量的能量。人們會想到,產生這麼大量能量的唯一機制看來不僅僅是一個恆星,而是一個星系的整個中心區域的引力坍縮。人們還發現了許多其他類星體,它們都有很大的紅移。但是它們都離開我們太遠了,所以對之進行觀察太困難,以至於不能給黑洞提供結論性的證據。

1967年,劍橋的一位研究生約瑟琳·貝爾發現了天空發射出無線電波的規則脈衝的物體,這對黑洞的存在的預言帶來了進一步的鼓舞。起初貝爾和她的導師安東尼·赫維許以為,他們可能和我們星系中的外星文明進行了接觸!我的確記得在宣布他們發現的討論會上,他們將這四個最早發現的源稱為LGM1-4,LGM表示「小綠人」(「Little Green Man」)的意思。然而,最終他們和所有其他人都得到了不太浪漫的結論,這些被稱為脈衝星的物體,事實上是旋轉的中子星,這些中子星由於它們的磁場和周圍物質複雜的相互作用,而發出無線電波的脈衝。這對於寫空間探險的作者而言是個壞消息,但對於我們這些當時相信黑洞的少數人來說,是非常大的希望——這是第一個中子星存在的證據。中子星的半徑大約10英哩,只是恆星變成黑洞的臨界半徑的幾倍。如果一顆恆星能坍縮到這麼小的尺度,預料其他恆星會坍縮到更小的尺度而成為黑洞,就是理所當然的了。

按照黑洞定義,它不能發出光,我們何以希望能檢測到它呢?這有點像在煤庫里找黑貓。慶幸的是,有一種辦法。正如約翰·米歇爾在他1783年的先驅性論文中指出的,黑洞仍然將它的引力作用到它周圍的物體上。天文學家觀測了許多系統,在這些系統中,兩顆恆星由於相互之間的引力吸引而互相圍繞著運動。他們還看到了,其中只有一顆可見的恆星繞著另一顆看不見的伴星運動的系統。人們當然不能立即得出結論說,這伴星即為黑洞——它可能僅僅是一顆太暗以至於看不見的恆星而已。然而,有些這種系統,例如叫做天鵝X-1(圖6.2)的,也剛好是一個強的X射線源。對這現象的最好解釋是,物質從可見星的表面被吹起來,當它落向不可見的伴星之時,發展成螺旋狀的軌道(這和水從浴缸流出很相似),並且變得非常熱而發出X射線(圖6.3)。為了使這機制起作用,不可見物體必須非常小,像白矮星、中子星或黑洞那樣。從觀察那顆可見星的軌道,人們可推算出不可見物體的最小的可能質量。 在天鵝X-1的情形,不可見星大約是太陽質量的6倍。按照強德拉塞卡的結果,它的質量太大了,既不可能是白矮星,也不可能是中子星。所以看來它只能是一個黑洞。

圖6.2在靠近照片中心的兩個恆星之中更亮的那顆是天鵝X-1, 被認為是

由互相繞著旋轉的一個黑洞和一個正常恆星組成。

圖6.3

還有其他不用黑洞來解釋天鵝X-1的模型,但所有這些都相當牽強附會。黑洞看來是對這一觀測的僅有的真正自然的解釋。儘管如此,我和加州理工學院的基帕·索恩打賭說,天鵝X-1不包含一個黑洞!這對我而言是一個保險的形式。我對黑洞作了許多研究,如果發現黑洞不存在,則這一切都成為徒勞。但在這種情形下,我將得到贏得打賭的安慰,他要給我4年的雜誌《私人眼睛》。如果黑洞確實存在,基帕·索思將得到1年的《閣樓》 。我們在1975年打賭時,大家80%斷定,天鵝座是一黑洞。迄今,我可以講大約95%是肯定的,但輸贏最終尚未見分曉。

現在,在我們的星系中和鄰近兩個名叫麥哲倫星雲的星系中,還有幾個類似天鵝X-1的黑洞的證據。然而,幾乎可以肯定,黑洞的數量比這多得太多了!在宇宙的漫長歷史中,很多恆星應該已經燒盡了它們的核燃料並坍縮了。黑洞的數目甚至比可見恆星的數目要大得相當多。 單就我們的星系中,大約總共有1千億顆可見恆星。這樣巨大數量的黑洞的額外引力就能解釋為何目前我們星系具有如此的轉動速率,單是可見恆星的質量是不足夠的。我們還有某些證據說明,在我們星系的中心有大得多的黑洞,其質量大約是太陽的10萬倍。星系中的恆星若十分靠近這個黑洞時,作用在它的近端和遠端上的引力之差或潮汐力會將其撕開,它們的遺骸以及其他恆星所拋出的氣體將落到黑洞上去。正如同在天鵝X-1情形那樣,氣體將以螺旋形軌道向里運動並被加熱, 雖然不如天鵝X-1那種程度會熱到發出X射線,但是它可以用來說明星系中心觀測到的非常緊緻的射電和紅外線源。

人們認為,在類星體的中心是類似的、但質量更大的黑洞,其質量大約為太陽的1億倍。 落入此超重的黑洞的物質能提供僅有的足夠強大的能源,用以解釋這些物體釋放出的巨大能量。當物質旋入黑洞,它將使黑洞往同一方向旋轉,使黑洞產生一類似地球上的一個磁場。落入的物質會在黑洞附近產生能量非常高的粒子。該磁場是如此之強,以至於將這些粒子聚焦成沿著黑洞旋轉軸,也即它的北極和南極方向往外噴射的射流。在許多星系和類星體中確實觀察到這類射流。

人們還可以考慮存在質量比太陽小很多的黑洞的可能性。因為它們的質量比強德拉塞卡極限低,所以不能由引力坍縮產生:這樣小質量的恆星,甚至在耗盡了自己的核燃料之後,還能支持自己對抗引力。只有當物質由非常巨大的壓力壓縮成極端緊密的狀態時,這小質量的黑洞才得以形成。一個巨大的氫彈可提供這樣的條件:物理學家約翰·惠勒曾經算過,如果將世界海洋里所有的重水製成一個氫彈,則它可以將中心的物質壓縮到產生一個黑洞。(當然,那時沒有一個人可能留下來去對它進行觀察!)更現實的可能性是,在極早期的宇宙的高溫和高壓條件下會產生這樣小質量的黑洞。因為一個比平均值更緊密的小區域,才能以這樣的方式被壓縮形成一個黑洞。所以當早期宇宙不是完全光滑的和均勻的情形,這才有可能。但是我們知道,早期宇宙必須存在一些無規性,否則現在宇宙中的物質分布仍然會是完全均勻的,而不能結塊形成恆星和星系。

很清楚,導致形成恆星和星系的無規性是否導致形成相當數目的「太初」黑洞,這要依賴於早期宇宙的條件的細節。所以如果我們能夠確定現在有多少太初黑洞,我們就能對宇宙的極早期階段了解很多。質量大於10億噸(一座大山的質量)的太初黑洞,可由它對其他可見物質或宇宙膨脹的影響被探測到。然而,正如我們需要在下一章看到的,黑洞根本不是真正黑的,它們像一個熱體一樣發光,它們越小則發熱發光得越厲害。所以看起來荒謬,而事實上卻是,小的黑洞也許可以比大的黑洞更容易地被探測到。

第七章 黑洞不是這麼黑的

在1970年以前,我關於廣義相對論的研究,主要集中於是否存在一個大爆炸奇點。然而,同年11月我的女兒露西出生後不久的一個晚上,當我上床時,我開始思考黑洞的問題。我的殘廢使得這個過程相當慢,所以我有許多時間。那時候還不存在關於空間——時間的那一點是在黑洞之內還是在黑洞之外的準確定義。我已經和羅傑·彭羅斯討論過將黑洞定義為不能逃逸到遠處的事件集合的想法,這也就是現在被廣泛接受的定義。它意味著,黑洞邊界——即事件視界——是由剛好不能從黑洞逃逸而永遠只在邊緣上徘徊的光線在空間——時間裡的路徑所形成的(圖7.1)。這有點像從警察那兒逃開,但是僅僅只能比警察快一步,而不能徹底地逃脫的情景!

圖7.1

我忽然意識到,這些光線的路徑永遠不可能互相靠近。如果它們靠近了,它們最終就必須互相撞上。這正如和另一個從對面逃離警察的人相遇——你們倆都會被抓住:(或者,在這種情形下落到黑洞中去。)但是,如果這些光線被黑洞所吞沒,那它們就不可能在黑洞的邊界上呆過。所以在事件視界上的光線的路徑必須永遠是互相平行運動或互相散開。另一種看到這一點的方法是,事件視界,亦即黑洞邊界,正像一個影子的邊緣——一個即將臨頭的災難的影子。如果你看到在遠距離上的一個源(譬如太陽)投下的影子,就能明白邊緣上的光線不會互相靠近。

如果從事件視界(亦即黑洞邊界)來的光線永遠不可能互相靠近,則事件視界的面積可以保持不變或者隨時間增大,但它永遠不會減小——因為這意味著至少一些在邊界上的光線必須互相靠近。事實上,只要物質或輻射落到黑洞中去,這面積就會增大(圖7.2) ;或者如果兩個黑洞碰撞併合並成一個單獨的黑洞,這最後的黑洞的事件視界面積就會大於或等於原先黑洞的事件視界面積的總和(圖7.3) 。事件視界面積的非減性質給黑洞的可能行為加上了重要的限制。我如此地為我的發現所激動,以至於當夜沒睡多少。第二天,我給羅傑·彭羅斯打電話,他同意我的結果。我想,事實上他已經知道了這個面積的性質。然而,他是用稍微不同的黑洞定義。他沒有意識到,假定黑洞已終止於不隨時間變化的狀態,按照這兩種定義,黑洞的邊界以及其面積都應是一樣的。

圖7.2 圖7.3

人們非常容易從黑洞面積的不減行為聯想起被叫做熵的物理量的行為。熵是測量一個系統的無序的程度。常識告訴我們,如果不進行外加干涉,事物總是傾向於增加它的無序度。(例如你只要停止保養房子,看會發生什麼?)人們可以從無序中創造出有序來(例如你可以油漆房子),但是必須消耗精力或能量,因而減少了可得到的有序能量的數量。

熱力學第二定律是這個觀念的一個準確描述。它陳述道:一個孤立系統的熵總是增加的,並且將兩個系統連接在一起時,其合併系統的熵大於所有單獨系統熵的總和。譬如,考慮一盒氣體分子的系統。分子可以認為是不斷互相碰撞並不斷從盒子壁反彈回來的康樂球。氣體的溫度越高,分子運動得越快,這樣它們撞擊盒壁越頻繁越厲害,而且它們作用到壁上的向外的壓力越大。假定初始時所有分子被一隔板限制在盒子的左半部,如果接著將隔板除去,這些分子將散開並充滿整個盒子。在以後的某一時刻,所有這些分子偶爾會都呆在右半部或回到左半部,但占絕對優勢的可能性是在左右兩半分子的數目大致相同。這種狀態比原先分子在左半部分的狀態更加無序,所以人們說熵增加了。類似地,我們將一個充滿氧分子的盒子和另一個充滿氮分子的盒子連在一起併除去中間的壁,則氧分子和氮分子就開始混合。在後來的時刻,最可能的狀態是兩個盒子都充滿了相當均勻的氧分子和氮分子的混合物。這種狀態比原先分開的兩盒的初始狀態更無序,即具有更大的熵。

和其他科學定律,譬如牛頓引力定律相比,熱力學定律的狀況相當不同,例如,它只是在絕大多數的而非所有情形下成立。在以後某一時刻,所有我們第一個盒子中的氣體分子在盒子的一半被發現的概率只有幾萬億分之一,但它們可能發生。但是,如果附近有一黑洞,看來存在一種非常容易的方法違反第二定律:只要將一些具有大量熵的物體,譬如一盒氣體扔進黑洞里。黑洞外物體的總熵就會減少。當然,人們仍然可以說包括黑洞里的熵的總熵沒有降低——但是由於沒有辦法看到黑洞裡面,我們不能知道裡面物體的熵為多少。如果黑洞具有某一特徵,黑洞外的觀察者因之可知道它的熵,並且只要攜帶熵的物體一落入黑洞,它就會增加,那將是很美妙的。緊接著上述的黑洞面積定理的發現(即只要物體落入黑洞,它的事件視界面積就會增加),普林斯頓一位名叫雅可布·柏肯斯坦的研究生提出,事件視界的面積即是黑洞熵的量度。由於攜帶熵的物質落到黑洞中去,它的事件視界的面積就會增加,這樣黑洞外物質的熵和事件視界面積的和就永遠不會降低。

看來在大多數情況下,這個建議不違背熱力學第二定律,然而還有一個致命的瑕疵。如果一個黑洞具有熵,那它也應該有溫度。但具有特定溫度的物體必須以一定的速率發出輻射。從日常經驗知道:只要將火鉗在火上燒至紅熱就能發出輻射。但在低溫下物體也發出輻射;通常情況下,只是因為其輻射相當小而沒被注意到。為了不違反熱力學第二定律這輻射是必須的。所以黑洞必須發出輻射。但正是按照其定義,黑洞被認為是不發出任何東西的物體,所以看來,不能認為黑洞的事件視界的面積是它的熵。1972年,我和布蘭登·卡特以及美國同事詹姆·巴丁合寫了一篇論文,在論文中我們指出,雖然在熵和事件視界的面積之間存在許多相似點,但還存在著這個致命的困難。我必須承認,寫此文章的部份動機是因為被柏肯斯坦所激怒,我覺得他濫用了我的事件視界面積增加的發現。然而,最後發現,雖然是在一種他肯定沒有預料到的情形下,但他基本上還是正確的。

1973年9月我訪問莫斯科時, 和蘇聯兩位最主要的專家雅可夫·捷爾多維奇和亞歷山大·斯塔拉賓斯基討論黑洞問題。他們說服我,按照量子力學不確定性原理,旋轉黑洞應產生並輻射粒子。在物理學的基礎上,我相信他們的論點,但是不喜歡他們計算輻射所用的數學方法。 所以我著手設計一種更好的數學處理方法, 並於1973年11月底在牛津的一次非正式討論會上將其公佈於眾。那時我還沒計算出實際上輻射多少出來。我預料要去發現的正是捷爾多維奇和斯塔拉賓斯基所預言的從旋轉黑洞發出的輻射。然而,當我做了計算,使我既驚奇又惱火的是,我發現甚至非旋轉黑洞顯然也以不變速率產生和發射粒子。起初我以為這種輻射表明我所用的一種近似無效。我擔心如果柏肯斯坦發現了這個情況,他就一定會用它去進一步支持他關於黑洞熵的思想,而我仍然不喜歡這種思想。然而,我越仔細推敲,越覺得這近似其實應該有效。但是,最後使我信服這輻射是真實的理由是,這輻射的粒子譜剛好是一個熱體輻射的譜,而且黑洞以剛好防止第二定律被違反的準確速率發射粒子。此後,其他人用多種不同的形式重複了這個計算,他們所有人都證實了黑洞必須如同一個熱體那樣發射粒子和輻射,其溫度只依賴於黑洞的質量——質量越大則溫度越低。

我們知道,任何東西都不能從黑洞的事件視界之內逃逸出來,何以黑洞會發射粒子呢?量子理論給我們的回答是,粒子不是從黑洞裡面出來的,而是從緊靠黑洞的事件視界的外面的「空」的空間來的!我們可以用以下的方法去理解它:我們以為是「真空」的空間不能是完全空的,因為那就會意味著諸如引力場和電磁場的所有場都必須剛好是零。然而場的數值和它的時間變化率如同不確定性原理所表明的粒子位置和速度那樣,對一個量知道得越準確,則對另一個量知道得越不準確。所以在空的空間里場不可能嚴格地被固定為零,因為那樣它就既有準確的值(零)又有準確的變化率(也是零)。場的值必須有一定的最小的不準確量或量子起伏。人們可以將這些起伏理解為光或引力的粒子對,它們在某一時刻同時出現、互相離開、然後又互相靠近而且互相湮滅。這些粒子正如同攜帶太陽引力的虛粒子:它們不像真的粒子那樣能用粒子加速器直接探測到。然而,可以測量出它們的間接效應。例如,測出繞著原子運動的電子能量發生的微小變化和理論預言是如此相一致,以至於達到了令人驚訝的地步。不確定性原理還預言了類似的虛的物質粒子對的存在,例如電子對和夸克對。然而在這種情形下,粒子對的一個成員為粒子而另一成員為反粒子(光和引力的反粒子正是和粒子相同)。

因為能量不能無中生有,所以粒子反粒子對中的一個參與者有正的能量,而另一個有負的能量。由於在正常情況下實粒子總是具有正能量,所以具有負能量的那一個粒子註定是短命的虛粒子。它必須找到它的伴侶並與之相湮滅。然而,一顆接近大質量物體的實粒子比它遠離此物體時能量更小,因為要花費能量抵抗物體的引力吸引才能將其推到遠處。正常情況下,這粒子的能量仍然是正的。但是黑洞里的引力是如此之強,甚至在那兒一個實粒子的能量都會是負的。所以,如果存在黑洞,帶有負能量的虛粒子落到黑洞里變成實粒子或實反粒子是可能的。這種情形下,它不再需要和它的伴侶相湮滅了,它被拋棄的伴侶也可以落到黑洞中去。啊,具有正能量的它也可以作為實粒子或實反粒子從黑洞的鄰近逃走(圖7.4) 。對於一個遠處的觀察者而言,這看起來就像粒子是從黑洞發射出來一樣。黑洞越小,負能粒子在變成實粒子之前必須走的距離越短,這樣黑洞發射率和表觀溫度也就越大。

圖7.4

輻射出去的正能量會被落入黑洞的負能粒子流所平衡。 按照愛因斯坦方程E=mc^2(E是能量, m是質量,c為光速),能量和質量成正比。所以往黑洞去的負能量流減少它的質量。當黑洞損失質量時,它的事件視界面積變小,但是它發射出的輻射的熵過量地補償了黑洞的熵的減少,所以第二定律從未被違反過。

還有,黑洞的質量越小,則其溫度越高。這樣當黑洞損失質量時,它的溫度和發射率增加,因而它的質量損失得更快。人們並不很清楚,當黑洞的質量最後變得極小時會發生什麼。但最合理的猜想是,它最終將會在一個巨大的、相當於幾百萬顆氫彈爆炸的發射爆中消失殆盡。

一個具有幾倍太陽質量的黑洞只具有千萬分之一度的絕對溫度。這比充滿宇宙的微波輻射的溫度(大約2.7K)要低得多,所以這種黑洞的輻射比它吸收的還要少。如果宇宙註定繼續永遠膨脹下去,微波輻射的溫度就會最終減小到比這黑洞的溫度還低, 它就開始損失質量。 但是即使那時候,它的溫度是如此之低,以至於要用100億億億億億億億億年(1後面跟66個O) 才全部蒸發完。這比宇宙的年齡長得多了, 宇宙的年齡大約只有100到200億年(1或2後面跟10個0)。另一方面,正如第六章提及的,在宇宙的極早期階段存在由於無規性引起的坍縮而形成的質量極小的太初黑洞。這樣的小黑洞會有高得多的溫度,並以大得多的速率發生輻射。具有10億噸初始質量的太初黑洞的壽命大體和宇宙的年齡相同。初始質量比這小的太初黑洞應該已蒸發完畢,但那些比這稍大的黑洞仍在輻射出X射線以及伽瑪射線。這些X射線和伽瑪射線像是光波,只是波長短得多。這樣的黑洞幾乎不配這黑的綽號:它們實際上是白熱的,正以大約1萬兆瓦的功率發射能量。

只要我們能夠駕馭黑洞的功率,一個這樣的黑洞可以開動十個大型的發電站。然而,這是非常困難的:這黑洞的質量和一座山差不多,卻被壓縮成萬億之一英寸亦即比一個原子核的尺度還小!如果在地球表面上你有這樣的一個黑洞,就無法阻止它透過地面落到地球的中心。它會穿過地球而來回振動,直到最後停在地球的中心。所以僅有的放置黑洞並利用之發出能量的地方是繞著地球轉動的軌道,而僅有的將其放到這軌道上的辦法是,用在它之前的一個大質量的吸引力去拖它,這和在驢子前面放一根胡羅卜相當像。至少在最近的將來,這個設想並不現實。

但是,即使我們不能駕馭這些太初黑洞的輻射,我們觀測到它們的機遇又如何呢?我們可以去尋找在太初黑洞壽命的大部分時間裡發出的伽瑪射線輻射。雖然它們在很遠以外的地方,從大部分黑洞來的輻射非常弱,但是從所有它們來的總的輻射是可以檢測得到的。 我們確實觀察到了這樣的一個伽瑪射線背景:圖7.5表示觀察到的強度隨頻率的變化。然而,這個背景可以是也可能是除了太初黑洞之外的過程產生的。圖7.5中點線指出,如果在每立方光年平均有300個太初黑洞,它們所發射的伽瑪射線的強度應如何地隨頻率而變化。所以可以說,伽瑪射線背景的觀測並沒給太初黑洞提供任何正的證據。但它們確實告訴我們,在宇宙中每立方光年不可能平均有300個以上的太初黑洞。 這個極限表明,太初黑洞最多只能構成宇宙中百萬分之一的物質。

圖7.5

由於太初黑洞是如此之稀罕,看來不太可能存在一個近到我們可以將其當作一個單獨的伽瑪射線源來觀察。但是由於引力會

圖7.5將太初黑洞往任何物質處拉近, 所以在星系裡面和附近它們應該會更稠密得多。 雖然伽瑪射線背景告訴我們,平均每立方光年不可能有多於300個太初黑洞,但它並沒有告訴我們,太初黑洞在我們星系中的密度。譬如講,如果它們的密度高100萬倍, 則離開我們最近的黑洞可能大約在10億公里遠,或者大約是已知的最遠的行星——冥王星那麼遠。在這個距離上去探測黑洞恆定的輻射,即使其功率為1萬兆瓦, 仍是非常困難的。人們必須在合理的時間間隔里,譬如一星期,從同方向檢測到幾個伽瑪射線量子,以便觀測到一個太初黑洞。否則,它們僅可能是背景的一部份。因為伽瑪射線有非常高的頻率,從普郎克量子原理得知,每一伽瑪射線量子具有非常高的能量,這樣甚至發射一萬兆瓦都不需要許多量子。而要觀測到從冥王星這麼遠來的如此少的粒子,需要一個比任何迄今已造成的更大的伽瑪射線探測器。況且,由於伽瑪射線不能穿透大氣層,此探測器必須放到外空間。

當然,如果一顆像冥王星這麼近的黑洞已達到它生命的末期並要爆炸開來,去檢測其最後爆炸的輻射是容易的。但是,如果一個黑洞已經輻射了100至200億年,不在過去或將來的幾百萬年里,而是在未來的若干年裡到達它生命的終結的可能性真是相當小!所以在你的研究津貼用光之前,為了有一合理的機會看到爆炸,必須找到在大約1光年距離之內檢測任何爆炸的方法。 你仍需要一個相當大的伽瑪射線探測器,以便去檢測從這爆炸來的若干伽瑪射線量子。然而,在這種情形下,不必去確定所有的量子是否來自同一方向,只要觀測到所有它們是在一個很短的時間間隔里來到的,就足夠使人相當確信它們是從同一爆炸來的。

整個地球大氣可以看作是一個能夠認出太初黑洞的伽瑪射線探測器。(無論如何,我們不太可能造出比這更大的探測器!)當一個高能的伽瑪射線量子打到我們大氣的原子上時,它會產生出電子正電子(反電子)對。當這些對打到其他原子上時,它們依序會產生出更多的電子正電子對,所以人們得到了所謂的電子陣雨。其結果是產生稱作切倫科夫輻射的光的形式。因而,我們可以由尋找夜空的閃光來檢測伽瑪射線爆。當然,存在許多其他現象,如閃電和太陽光從翻跟斗的衛星以及軌道上的碎片的反射,都能在天空發出閃光。人們可在兩個或更多的隔開相當遠的地點同時觀察這閃光,將伽瑪射線爆從以上所說的現象中識別出來。兩位都柏林的科學家奈爾·波特和特勒伏·威克斯利用阿歷桑那州的望遠鏡進行了這類的探索。他們找到了一些閃光,但沒有一個可以確認為是從太初黑洞來的伽瑪射線爆。

即使對太初黑洞的探索證明是否定的,並且看來可能會是這樣,仍然給了我們關於極早期宇宙的重要信息。如果早期宇宙曾經是紊亂或無規的,或者物質的壓力很低,可以預料到會產生比我們對伽瑪射線背景所作的觀測所設下的極限更多的太初黑洞。只有當早期宇宙是非常光滑和均勻的,並有很高的壓力,人們才能解釋為何沒有觀測到太初黑洞。

黑洞輻射的思想是第一個這樣的例子,它以基本的方式依賴於本世紀兩個偉大理論即廣義相對論和量子力學所作的預言。因為它推翻了已有的觀點,所以一開始就引起了許多反對:「黑洞怎麼會輻射東西出來?」當我在牛津附近的盧瑟福——阿普頓實驗室的一次會議上,第一次宣布我的計算結果時,受到了普遍質疑。我講演結束後,會議主席、倫敦國王學院的約翰·泰勒宣布這一切都是毫無意義的。他甚至為此還寫了一篇論文。然而,最終包括約翰·泰勒在內的大部分人都得出結論:如果我們關於廣義相對論和量子力學的其他觀念是正確的,黑洞必須像熱體那樣輻射。這樣,即使我們還不能找到一個太初黑洞,大家相當普遍地同意,如果找到的話,它必須正在發射出大量的伽瑪射線和X射線。

黑洞輻射的存在看來意味著,引力坍縮不像我們曾經認為的那樣是最終的、不可逆轉的。如果一個航天員落到黑洞中去,黑洞的質量將增加,但是最終這額外質量的等效能量會以輻射的形式回到宇宙中去。這樣,此航天員在某種意義上被「再循環」了。然而,這是一種非常可憐的不朽,當他在黑洞里被撕開時,他的任何個人的時間的概念幾乎肯定都達到了終點,甚至最終從黑洞輻射出來的粒子的種類一般都和構成這航天員的不同:這航天員所遺留下來的僅有特徵是他的質量或能量。

當黑洞的質量大於幾分之一克時,我用以推導黑洞輻射的近似應是很有效的。但是,當黑洞在它的生命晚期,質量變成非常小時,這近似就失效了。最可能的結果看來是,它至少從宇宙的我們這一區域消失了,帶走了航天員和可能在它裡面的任何奇點(如果其中確有一個奇點的話)。這是量子力學能夠去掉廣義相對論預言的奇點的第一個跡象。然而,我和其他人在1974年所用的方法不能回答諸如量子引力論中是否會發生奇性的問題。所以從1975年以來,根據理查德·費因曼對於歷史求和的思想,我開始發展一種更強有力的量子引力論方法。這種方法對宇宙的開端和終結,以及其中的諸如航天員之類的存在物給出的答案,這些將在下兩章中敘述。我們將看到,雖然不確定性原理對於我們所有的預言的準確性都加上了限制,同時它卻可以排除掉發生在空間——時間奇點處的基本的不可預言性。

第八章 宇宙的起源和命運

愛因斯坦廣義相對論本身預言了:空間—時間在大爆炸奇點處開始,並會在大擠壓奇點處(如果整個宇宙坍縮的話)或在黑洞中的一個奇點處(如果一個局部區域,譬如恆星要坍縮的話)結束。任何拋進黑洞的東西都會在奇點處被毀滅,只有它的質量的引力效應能繼續在外面被感覺得到。另一方面,當計入量子效應時,物體的質量和能量會最終回到宇宙的其餘部分,黑洞和在它當中的任何奇點一道被蒸發掉並最終消失。量子力學對大爆炸和大擠壓奇點也能有同樣戲劇性的效應嗎?在宇宙的極早或極晚期,當引力場是如此之強,以至於量子效應不能不考慮時,究竟會發生什麼?宇宙究竟是否有一個開端或終結?如果有的話,它們是什麼樣子的?

整個70年代我主要在研究黑洞,但在1981年參加在梵蒂岡由耶穌會組織的宇宙學會議時,我對於宇宙的起源和命運問題的興趣重新被喚起。天主教會試圖對科學的問題立法,並宣布太陽是繞著地球運動時,對伽利略犯下了大錯誤。幾個世紀後的現在,它決定邀請一些專家就宇宙學問題提出建議。在會議的尾聲,所有參加者應邀出席教皇的一次演講。他告訴我們,在大爆炸之後的宇宙演化是可以研究的,但是我們不應該去過問大爆炸本身,因為那是創生的時刻,因而是上帝的事務。那時候我心中暗喜,他並不知道,我剛在會議上作過的演講的主題——空間—時間是有限而無界的可能性,就表明著沒有開端、沒有創生的時刻。我不想去分享伽利略的厄運。我對伽利略之所以有一種強烈的認同感,其部分原因是剛好我出生於他死後的300年!

為了解釋我和其他人關於量子力學如何影響宇宙的起源和命運的思想,必須首先按照「熱大爆炸模型」來理解為大家所接受的宇宙歷史。它是假定從早到大爆炸時刻起宇宙就用弗利德曼模型描述。在此模型中,人們發現當宇宙膨脹時,其中的任何物體或輻射都變得更涼。(當宇宙的尺度大到二倍,它的溫度就降低到一半。)由於溫度即是粒子的平均能量——或速度的測度,宇宙的變涼對於其中的物質就會有較大的效應。在非常高的溫度下,粒子會運動得如此之快,以至於能逃脫任何由核力或電磁力將它們吸引一起的作用。但是可以預料,當它們變冷下來時,互相吸引的粒子開始結塊。更有甚者,連存在於宇宙中的粒子的種類也依賴於溫度。在足夠高的溫度下,粒子的能量是如此之高,只要它們碰撞就會產生出來很多不同的粒子/反粒子對——並且,雖然其中一些粒子打到反粒子上去時會湮滅,但是它們產生得比湮滅得更快。然而,在更低的溫度下,碰撞粒子具有較小的能量,粒子/反粒子對產生得不快,而湮滅則變得比產生更快。

就在大爆炸時,宇宙體積被認為是零,所以是無限熱。但是,輻射的溫度隨著宇宙的膨脹而降低。大爆炸後的1秒鐘,溫度降低到約為100億度,這大約是太陽中心溫度的1千倍, 亦即氫彈爆炸達到的溫度。此刻宇宙主要包含光子、電子和中微子(極輕的粒子,它只受弱力和引力的作用)和它們的反粒子,還有一些質子和中子。隨著宇宙的繼續膨脹,溫度繼續降低,電子/反電子對在碰撞中的產生率就落到它們湮滅率之下。這樣只剩下很少的電子,而大部分電子和反電子相互湮滅,產生出更多的光子。然而,中微子和反中微子並沒有互相湮滅掉,因為這些粒子和它們自己以及其他粒子的作用非常微弱,所以直到今天它們應該仍然存在。如果我們能觀測到它們,就會為非常熱的早期宇宙階段的圖象提供一個很好的證據。可惜現今它們的能量太低了,以至於我們不能直接地觀察到。然而,如果中微子不是零質量,而是如蘇聯在1981年進行的一次沒被證實的實驗所暗示的,自身具有小的質量,我們則可能間接地探測到它們。正如前面提到的那樣,它們可以是「暗物質」的一種形式,具有足夠的引力吸引去遏止宇宙的膨脹,並使之重新坍縮。

在大爆炸後的大約100秒, 溫度降到了10億度,也即最熱的恆星內部的溫度。在此溫度下,質子和中子不再有足夠的能量逃脫強核力的吸引,所以開始結合產生氘(重氫)的原子核。氘核包含一個質子和一個中子。然後,氘核和更多的質子中子相結合形成氦核,它包含二個質子和二個中子,還產生了少量的兩種更重的元素鋰和鈹。可以計算出,在熱大爆炸模型中大約4分之1的質子和中子轉變了氦核,還有少量的重氫和其他元素。所餘下的中子會衰變成質子,這正是通常氫原子的核。

1948年,科學家喬治·伽莫夫和他的學生拉夫·阿爾法在合寫的一篇著名的論文中,第一次提出了宇宙的熱的早期階段的圖像。伽莫夫頗有幽默——他說服了核物理學家漢斯·貝特將他的名字加到這論文上面,使得列名作者為「阿爾法、貝特、伽莫夫」,正如希臘字母的前三個:阿爾法、貝他、伽瑪,這特別適合於一篇關於宇宙開初的論文!他們在此論文中作出了一個驚人的預言:宇宙的熱的早期階段的輻射(以光子的形式)今天還應在周圍存在,但是其溫度已被降低到只比絕對零度(一273℃) 高几度。這正是彭齊亞斯和威爾遜在1965年發現的輻射。在阿爾法、貝特和伽莫夫寫此論文時,對於質子和中子的核反應了解得不多。所以對於早期宇宙不同元素比例所作的預言相當不準確,但是,在用更好的知識重新進行這些計算之後,現在已和我們的觀測符合得非常好。況且,在解釋宇宙為何應該有這麼多氦時,用任何其他方法都是非常困難的。所以,我們相當確信,至少一直回溯到大爆炸後大約一秒鐘為止,這個圖像是正確無誤的。

大爆炸後的幾個鐘頭之內, 氦和其他元素的產生就停止了。之後的100萬年左右,宇宙僅僅只是繼續膨脹,沒有發生什麼事。最後,一旦溫度降低到幾千度,電子和核子不再有足夠能量去抵抗它們之間的電磁吸引力,它們就開始結合形成原子。宇宙作為整體,繼續膨脹變冷,但在一個略比平均更密集的區域,膨脹就會由於額外的引力吸引而慢下來。在一些區域膨脹會最終停止並開始坍縮。當它們坍縮時,在這些區域外的物體的引力拉力使它們開始很慢地旋轉;當坍縮的區域變得更小,它會自轉得更快——正如在冰上自轉的滑冰者,縮回手臂時會自轉得更快;最終,當這些區域變得足夠小,自轉的速度就足以平衡引力的吸引,碟狀的旋轉星系就以這種方式誕生了。另外一些區域剛好沒有得到旋轉,就形成了叫做橢圓星系的橢球狀物體。這些區域之所以停止坍縮是因為星系的個別部分穩定地繞著它的中心旋轉,但星系整體並沒有旋轉。

隨著時間流逝,星系中的氫和氦氣體被分割成更小的星雲,它們在自身引力下坍縮。當它們收縮時,其中的原子相碰撞,氣體溫度升高,直到最後,熱得足以開始熱驟變反應。這些反應將更多的氫轉變成氦,釋放出的熱升高了壓力,因此使星雲不再繼續收縮。正如同我們的太陽一樣,它們將氫燃燒成氦,並將得到的能量以熱和光的形式輻射出來。它們會穩定地在這種狀態下停留一段很長的時間。質量更大的恆星需要變得更熱,以去平衡它們更強的引力,使得其核聚變反應進行得極快,以至於它們在1億年這麼短的時間裡將氫用光。 然後,它們會稍微收縮一點。當它們進一步變熱,就開始將氦轉變成像碳和氧這樣更重的元素。但是,這一過程沒有釋放出太多的能量,所以正如在黑洞那一章描述的,危機就會發生了。人們不完全清楚下面還會發生什麼,但是看來恆星的中心區域會坍縮成一個非常緊緻的狀態,譬如中子星或黑洞。恆星的外部區域有時會在叫做超新星的巨大爆發中吹出來,這種爆發會使星系中的所有恆星相形之下顯得黯淡無光。一些恆星接近生命終點時產生的重元素就拋回到星系裡的氣體中去,為下一代恆星提供一些原料。我們自己的太陽包含大約2%這樣的重元素, 因為它是第二代或第三代恆星,是由50億年前從包含有更早的超新星的碎片的旋轉氣體雲形成的。雲里的大部分氣體形成了太陽或者噴到外面去,但是少量的重元素集聚在一起,形成了像地球這樣的、現在繞太陽公轉的物體。

地球原先是非常熱的,並且沒有大氣。在時間的長河中它冷卻下來,並從岩石中溢出的氣體里得到了大氣。這早先的大氣不能使我們存活。因為它不包含氧氣,但有很多對我們有毒的氣體,如硫化氫(即是使臭雞蛋難聞的氣體)。然而,存在其他在這條件下能繁衍的生命的原始形式。人們認為,它們可能是作為原子的偶然結合形成叫做宏觀分子的大結構的結果而在海洋中發展,這種結構能夠將海洋中的其他原子聚集成類似的結構。它們就這樣地複製了自己並繁殖。在有些情況下複製有誤差。這些誤差多數使得新的宏觀分子不能複製自己,並最終被消滅。然而,有一些誤差會產生出新的宏觀分子,在複製它們自己時會變得更好。所以它們具有優點,並趨向於取代原先的宏觀分子。進化的過程就是用這種方式開始,它導致了越來越複雜的自複製的組織。第一種原始的生命形式消化了包括硫化氫在內的不同物質而放出氧氣。這樣就逐漸地將大氣改變到今天這樣的成份,允許諸如魚、爬行動物、哺乳動物以及最後人類等生命的更高形式的發展。

宇宙從非常熱開始並隨膨脹而冷卻的景象,和我們今天所有的觀測證據相一致。儘管如此,還有許多重要問題未被回答:

(1)為何早期宇宙如此之熱?

(2) 為何在大尺度上宇宙是如此一致?為何在空間的所有地方和所有方向上它顯得是一樣的?尤其是,當我們朝不同方向看時,為何微波輻射背景的溫度是如此之相同?這有點像問許多學生一個考試題。如果所有人都剛好給出相同的回答,你就會十分肯定,他們互相之間通過話。在上述的模型中,從大爆炸開始光還沒有來得及從一個很遠的區域傳到另一個區域,即使這兩個區域在宇宙的早期靠得很近。按照相對論,如果連光都不能從一個區域走到另一個區域,則沒有任何其他的信息能做到。所以,除非因為某種不能解釋的原因,導致早期宇宙中不同的區域剛好從同樣的溫度開始,否則,沒有一種方法能使它們有互相一樣的溫度。

(3) 為何宇宙以這樣接近於區分坍縮和永遠膨脹模型的臨界膨脹率的速率開始, 以至於即使在100億年以後的現在,它仍然幾乎以臨界的速率膨脹?如果在大爆炸後的1秒鐘那一時刻其膨脹率甚至只要小十億億分之一, 那麼在它達到今天這麼大的尺度之前宇宙就已坍縮。

(4) 儘管在大尺度上宇宙是如此的一致和均勻,它卻包含有局部的無規性,諸如恆星和星系。人們認為,這些是從早期宇宙中不同區域間的密度的很小的差別發展而來。這些密度起伏的起源是什麼?

廣義相對論本身不能解釋這些特徵或回答這些問題,因為它預言,在大爆炸奇點宇宙是從無限密度開始的。在奇點處,廣義相對論和所有其他物理定律都失效:人們不能預言從奇點會出來什麼。正如以前解釋的,這表明我們可以從這理論中除去大爆炸奇點和任何先於它的事件,因為它們對我們沒有任何觀測效應。空間一時間就會有邊界——大爆炸處的開端。

看來科學揭露了一組定律,在不確定性原理極限內,如果我們知道宇宙在任一時刻的狀態,這些定律就會告訴我們,它如何隨時間發展。這些定律也許原先是由上帝頒布的,但是看來從那以後他就讓宇宙按照這些定律去演化,而不再對它干涉。但是,它是如何選擇宇宙的初始狀態和結構的?在時間的開端處「邊界條件」是什麼?

一種可能的回答是,上帝選擇宇宙的這種初始結構是因為某些我們無望理解的原因。這肯定是在一個全能造物主的力量之內。但是如果他使宇宙以這種不可理解的方式開始,何以他又選擇讓它按照我們可理解的定律去演化?整部科學史是對事件不是以任意方式發生,而是反映了一定的內在秩序的逐步的意識。這秩序可以是、也可以不是由神靈主宰的。只有假定這種秩序不但應用於定律,而且應用於在空間—時間邊界處所給定的宇宙初始條件才是自然的。可以有大量具有不同初始條件的宇宙模型,它們都服從定律。應該存在某種原則去抽取一個初始狀態,也就是一個模型去代表我們的宇宙。

所謂的紊亂邊界條件即是這樣的一種可能性。這裡含蓄地假定,或者宇宙是空間無限的,或者存在無限多宇宙。在紊亂邊界條件下,在剛剛大爆炸之後,尋求任何空間的區域在任意給定的結構的概率,在某種意義上,和它在任何其他的結構的概率是一樣的:宇宙初始態的選擇純粹是隨機的。這意味著,早期宇宙可能是非常紊亂和無規則的。因為與光滑和有序的宇宙相比,存在著更多得多的紊亂和無序的宇宙。(如果每一結構都是等幾率的,多半宇宙是從紊亂無序態開始,就是因為這種態多得這麼多。)很難理解,從這樣紊亂的初始條件,如何導致今天我們這個在大尺度上如此光滑和規則的宇宙。人們還預料,在這樣的模型中,密度起伏導致了比由伽瑪射線背景所限定的多得多的太初黑洞的形成。

如果宇宙確實是空間無限的,或者如果存在無限多宇宙,則就會存在某些從光滑和一致的形態開始演化的大的區域。這有一點像著名的一大群猴子敲打打字機的故事——它們大部分所寫的都是廢話。但是純粹由於偶然,它們可能碰巧打出莎士比亞的一首短詩。類似地,在宇宙的情形,是否我們可能剛好生活在一個光滑和一致的區域里呢?初看起來,這是非常不可能的,因為這樣光滑的區域比紊亂的無序的區域少得多得多。然而,假定只有在光滑的區域里星系、恆星才能形成,才能有合適的條件,讓像我們這樣複雜的、有能力質疑為什麼宇宙是如此光滑的問題、能自然複製的組織得以存在。這就是被稱為人擇原理的一個應用的例子。人擇原理可以釋義作:「我們看到的宇宙之所以這個樣子,乃是因為我們的存在。」

人擇原理有弱的和強的意義下的兩種版本。弱人擇原理是講,在一個大的或具有無限空間和/或時間的宇宙里,只有在空間一時間有限的一定區域里,才存在智慧生命發展的必要條件。在這些區域中,如果智慧生物觀察到他們在宇宙的位置滿足那些為他們生存所需的條件,他們不應感到驚訝。這有點像生活在富裕街坊的富人看不到任何貧窮。

應用弱人擇原理的一個例子是「解釋」 為何大爆炸發生於大約100億年之前——智慧生物需要那麼長時間演化。正如前面所解釋的,一個早代的恆星首先必須形成。這些恆星將一些原先的氫和氦轉化成像碳和氧這樣的元素,由這些元素構成我們。然後恆星作為超新星而爆發,其裂片形成其他恆星和行星,其中就包括我們的太陽系,太陽系年齡大約是50億年。地球存在的頭10億或20億年,對於任何複雜東西的發展都嫌太熱。餘下的30億年左右才用於生物進化的漫長過程,這個過程導致從最簡單的組織到能夠測量回溯到大爆炸那一瞬間的生物的形成。

很少人會對弱人擇原理的有效性提出異議。然而,有的人走得更遠並提出強人擇原理。按照這個理論,存在許多不同的宇宙或者一個單獨宇宙的許多不同的區域,每一個都有自己初始的結構,或許還有自己的一套科學定律。在這些大部分宇宙中,不具備複雜組織發展的條件;只有很少像我們的宇宙,在那裡智慧生命得以發展並質疑:「為何宇宙是我們看到的這種樣子?」這回答很簡單:如果它不是這個樣子,我們就不會在這兒!

我們現在知道,科學定律包含許多基本的數,如電子電荷的大小以及質子和電子的質量比。至少現在,我們不能從理論上預言這些數值——我們必須由觀察找到它們。也許有一天,我們會發現一個將它們所有都預言出來的一個完整的統一理論,但是還可能它們之中的一些或全部,在不同的宇宙或在一個宇宙之中是變化的。令人吃驚的事實是,這些數值看來是被非常細緻地調整到使得生命的發展成為可能。例如,如果電子的電荷只要稍微有點不同,則要麼恆星不能夠燃燒氫和氦,要麼它們沒有爆炸過。當然,也許存在其他形式的、甚至還沒被科學幻想作家夢想過的智慧生命。它並不需要像太陽這樣恆星的光,或在恆星中製造出並在它爆炸時被拋到空間去的更重的化學元素。儘管如此,看來很清楚,允許任何智慧生命形式的發展的數值範圍是比較小的。對於大部份數值的集合,宇宙也會產生,雖然它們可以是非常美的,但不包含任何一個能為如此美麗而驚訝的人。人們既可以認為這是在創生和科學定律選擇中的神意的證據,也可以認為是對強人擇原理的支持。

人們可以提出一系列理由,來反對強人擇原理對宇宙的所觀察到的狀態的解釋。首先,在何種意義上可以說,所有這些不同的宇宙存在?如果它們確實互相隔開,在其他宇宙發生的東西,怎麼可以在我們自己的宇宙中沒有可觀測的後果?所以,我們應該用經濟學原理,將它們從理論中割除去。另一方面,它們若僅僅是一個單獨宇宙的不同區域,則在每個區域里的科學定律必須是一樣的,因為否則人們不能從一個區域連續地運動到另一區域。在這種情況下,不同區域之間的僅有的不同只是它們的初始結構。這樣,強人擇原理即歸結為弱人擇原理。

對強人擇原理的第二個異議是,它和整個科學史的潮流背道而馳。我們是從托勒密和他的黨人的地心宇宙論發展而來,通過哥白尼和伽利略日心宇宙論,直到現代的圖象,其中地球是一個中等大小的行星,它繞著一個尋常的螺旋星系外圈的普通恆星作公轉,而這星系本身只是在可觀察到的宇宙中萬億個星系中的一個。然而強人擇原理卻宣布,這整個龐大的構造僅僅是為我們的緣故而存在,這是非常難以令人置信的。我們太陽系肯定是我們存在的前提,人們可以將之推廣於我們的星系,使之允許早代的恆星產生重元素。但是,絲毫看不出存在任何其他星系的必要,在大尺度上也不需要宇宙在每一方向上必須如此一致和類似。

如果人們能夠表明,相當多的宇宙的不同初始結構會演化產生像我們今天看到的宇宙,至少在弱的形式上,人們會對人擇原理感到更滿意。如果這樣,則一個從某些隨機的初始條件發展而來的宇宙,應當包含許多光滑的、一致的並適合智慧生命演化的區域。另一方面,如果宇宙的初始條件必須極端仔細地選擇,才能導致在我們周圍所看到的一切,宇宙就不太可能包含任何會出現生命的區域。在上述的熱大爆炸模型中,沒有足夠的方向使熱從一個區域流到另一區域。這意味著宇宙的初始態在每一處必須剛好有同樣的溫度,才能說明我們在每一方向上看到的微波背景輻射都有同樣溫度,其初始的膨脹率也要非常精確地選擇,才能使得現在的膨脹率仍然是如此接近於需要用以避免坍縮的臨界速率。這表明,如果直到時間的開端熱大爆炸模型都是正確的,則必須非常仔細地選擇宇宙的初始態。所以,除非作為上帝有意創造像我們這樣生命的行為,否則要解釋為何宇宙只用這種方式起始是非常困難的。

為了試圖尋找一個能從許多不同的初始結構演化到象現在這樣的宇宙的宇宙模型,麻省理工學院的科學家阿倫·固斯提出,早期宇宙可能存在過一個非常快速膨脹的時期。這種膨脹叫做「暴漲」,意指宇宙在一段時間裡,不像現在這樣以減少的、 而是以增加的速率膨脹。按照固斯理論,在遠遠小於1秒的時間裡,宇宙的半徑增大了100萬億億億(1後面跟30個0)倍。

固斯提出,宇宙是以一個非常熱而且相當紊亂的狀態從大爆炸開始的。這些高溫表明宇宙中的粒子運動得非常快並具有高能量。正如早先我們討論的,人們預料在這麼高的溫度下,強和弱核力及電磁力都被統一成一個單獨的力。當宇宙膨脹時它會變冷,粒子能量下降。最後出現了所謂的相變,並且力之間的對稱性被破壞了:強力變得和弱力以及電磁力不同。相變的一個普通的例子是,當水降溫時會凍結成冰。液態水是對稱的,它在任何一點和任何方向上都是相同的。然而,當冰晶體形成時,它們有確定的位置,並在某一方向上整齊排列,這就破壞了水的對稱。

處理水的時候,只要你足夠小心,就能使之「過冷」,也就是可以將溫度降低到冰點(0℃) 以下而不結冰。固斯認為,宇宙的行為也很相似:宇宙溫度可以低到臨界值以下,而沒有使不同的力之間的對稱受到破壞。如果發生這種情形,宇宙就處於一個不穩定狀態,其能量比對稱破缺時更大。這特殊的額外能量呈現出反引力的效應:其作用如同一個宇宙常數。宇宙常數是當愛因斯坦在試圖建立一個穩定的宇宙模型時,引進廣義相對論之中去的。由於宇宙已經像大爆炸模型那樣膨脹,所以這宇宙常數的排斥效應使得宇宙以不斷增加的速度膨脹,即使在一些物質粒子比平均數多的區域,這一有效宇宙常數的排斥作用超過了物質的引力吸引作用。這樣,這些區域也以加速暴漲的形式而膨脹。當它們膨脹時,物質粒子越分越開,留下了一個幾乎不包含任何粒子,並仍然處於過冷狀態的膨脹的宇宙。宇宙中的任何不規則性都被這膨脹抹平,正如當你吹脹氣球時,它上面的皺紋就被抹平了。所以,宇宙現在光滑一致的狀態,可以是從許多不同的非一致的初始狀態演化而來。

在這樣一個其膨脹由宇宙常數加速、而不由物質的引力吸引使之減慢的宇宙中,早期宇宙中的光線就有足夠的時間從一個地方傳到另一個地方。這就解答了早先提出的,為何在早期宇宙中的不同區域具有同樣性質的問題。不但如此,宇宙的膨脹率也自動變得非常接近於由宇宙的能量密度決定的臨界值。這樣,不必去假設宇宙初始膨脹率曾被非常仔細地選擇過,就能解釋為何現在的膨脹率仍然是如此地接近於臨界值。

暴漲的思想還能解釋為何宇宙存在這麼多物質。在我們能觀察到的宇宙里大體有1億億億億億億億億億億(1後面跟80個0) 個粒子。它們從何而來?答案是,在量子理論中,粒子可以從粒子/反粒子對的形式由能量中創生出來。但這只不過引起了能量從何而來的問題。答案是,宇宙的總能量剛好是零。宇宙的物質是由正能量構成的;然而,所有物質都由引力互相吸引。兩塊互相靠近的物質比兩塊分得很開的物質具有更少的能量,因為你必須消耗能量去克服把它們拉在一起的引力而將其分開。這樣,在一定意義上,引力場具有負能量。在空間上大體一致的宇宙的情形中,人們可以證明,這個負的引力能剛好抵消了物質所代表的正能量,所以宇宙的總能量為零。

零的兩倍仍為零。這樣宇宙可以同時將其正的物質能和負的引力能加倍,而不破壞其能量的守恆。在宇宙的正常膨脹時,這並沒有發生。這時當宇宙變大時,物質能量密度下降。然而,這種情形確實發生於暴漲時期。因為宇宙膨脹時,過冷態的能量密度保持不變:當宇宙體積加倍時,正物質能和負引力能都加倍,總能量保持為零。在暴漲相,宇宙的尺度增大了一個非常大的倍數。這樣,可用以製造粒子的總能量變得非常大。正如固斯所說的:「都說沒有免費午餐這件事,但是宇宙是最徹底的免費午餐。」

今天宇宙不是以暴漲的方式膨脹。這樣,必須有一種機制,它可以消去這一非常大的有效宇宙常數,從而使膨脹率從加速的狀態,改變為正如同今天這樣由引力減慢下的樣子。人們可以預料,在宇宙暴漲時不同力之間的對稱最終會被破壞,正如過冷的水最終會凝固一樣。這樣,未破缺的對稱態的額外能量就會釋放,並將宇宙重新加熱到剛好低於使不同力對稱的臨界溫度。以後,宇宙就以標準的大爆炸模式繼續膨脹並變冷。但是,現在找到了何以宇宙剛好以臨界速率膨脹,並在不同的區域具有相同溫度的解釋。

在固斯的原先設想中,有點像在非常冷的水中出現冰晶體,相變是突然發生的。其想法是,正如同沸騰的水圍繞著蒸汽泡,新的對稱破缺相的「泡泡」在原有的對稱相中形成。泡泡膨脹並互相碰撞,直到整個宇宙變成新相。麻煩在於,正如同我和其他幾個人所指出的,宇宙膨脹得如此之快,甚至即使泡泡以光速漲大,它們也要互相分離,並因此不能合併在一起。結果宇宙變成一種非常不一致的狀態,有些區域仍具有不同力之間的對稱。這樣的模型跟我們所觀察到的宇宙並不吻合。

1981年10月,我去莫斯科參加量子引力的會議。會後,我在斯特堡天文研究所做了一個有關暴漲模型和它的問題的講演。聽眾席中有一年輕的蘇聯人——莫斯科列別提夫研究所的安德雷·林德——他講,如果泡泡是如此之大,以至於我們宇宙的區域被整個地包含在一個單獨的泡泡之中,則可以避免泡泡不能合併在一起的困難。為了使這個行得通,從對稱相向對稱破缺相的改變必須在泡泡中進行得非常慢,而按照大統一理論這是相當可能的。林德的緩慢對稱破缺思想是非常好的,但過後我意識到,他的泡泡在那一時刻必須比宇宙的尺度還要大!我指出,那時對稱不僅僅在泡泡里,而且在所有的地方同時被破壞。這會導致一個正如我們所觀察到的一致的宇宙。我被這個思想弄得非常激動,並和我的一個學生因·莫斯討論。然而,當我後來收到一個科學雜誌社寄來的林德的論文,徵求是否可以發表時,作為他的朋友,我感到相當難為情。我回答說,這裡有一個關於泡泡比宇宙還大的瑕疵,但是裡面關於緩慢對稱破缺的基本思想是非常好的。我建議將此論文照原樣發表。因為林德要花幾個月時間去改正它,並且他寄到西方的任何東西都要通過蘇聯的審查,這種對於科學論文的審查既無技巧可言又很緩慢。我和因·莫斯便越俎代庖,為同一雜誌寫了一篇短文。我們在該文中指出這泡泡的問題,並提出如何將其解決。

我從莫斯科返回的第二天,即去費城接受富蘭克林研究所的獎章。我的秘書朱迪·費拉以其不差的魅力說服了英國航空公司向她和我免費提供協和式飛機的宣傳旅行座席。然而,在去機場的路上被大雨耽擱,我沒趕上航班。儘管如此,我最終還是到了費城並得到獎章。之後,應邀作了關於暴漲宇宙的講演。正如在莫斯科那樣,我用大部分時間講授關於暴漲模型的問題。但在結尾時,我提到林德關於緩慢對稱破缺的思想,以及我的修正意見。聽眾中有一位年輕的賓夕凡尼亞大學的助理教授保羅·斯特恩哈特, 講演後他和我討論暴漲的問題。次年2月份,他寄給我一篇由他和一個學生安德魯斯·阿爾伯勒希特合寫的論文。在該文中,他們提出了某種非常類似林德緩慢對稱破缺的思想。後來他告訴我,他不記得我描述過林德的思想,並且只是在他們幾乎完成論文之時,才看到林德的文章。在西方,現在他們和林德分享以緩慢對稱破缺的思想為基礎,並發現所謂新暴漲模型的榮譽。(舊的暴漲模型是指固斯關於形成泡泡後快速對稱破缺的原始設想。)

新暴漲模型是一個好的嘗試,它能解釋宇宙為何是這種樣子。然而我和其他幾個人指出,至少在它原先的形式,它預言的微波背景輻射的溫度起伏比所觀察到的情形要大得多。後來的工作還對極早期宇宙中是否存在這類所需要的相變提出懷疑。我個人的意見是,現在新暴漲模型作為一個科學理論是氣數已盡。雖然有很多人似乎沒有聽進它的死訊,還繼續寫文章,好像那理論還有生命力。林德在1983年提出了一個更好的所謂紊亂暴漲模型。這裡沒有相變和過冷,而代之以存在一個自旋為0的場, 由於它的量子漲落,在早期宇宙的某些區域有大的場量。在那些區域中,場的能量起到宇宙常數的作用,它具有排斥的引力效應,因此使得這些區域以暴漲的形式膨脹。當它們膨脹時,它們中的場的能量慢慢地減小,直到暴漲改變到猶如熱大爆炸模型中的膨脹時為止。這些區域之一就成為我們看到的宇宙。這個模型具有早先暴漲模型的所有優點,但它不是取決於使人生疑的相變,並且還能給出微波背景輻射的溫度起伏,其幅度與觀測相符合。

暴漲模型的研究指出:宇宙現在的狀態可以從相當大量的不同初始結構引起的。這是重要的,因為它表明不必非常細心地選取我們居住的那部份宇宙區域的初始狀態。所以,如果願意的話,我們可以利用弱人擇原理解釋宇宙為何是這個樣子。然而,絕不是任何一種初始結構都會產生像我們所觀察到的宇宙。這一點很容易說明,考慮現在宇宙處於一個非常不同的態,例如一個非常成團的、非常無規則的態,人們可以利用科學定律,在時間上將其演化回去,以確定宇宙在更早時刻的結構。按照經典廣義相對論的奇點定理,仍然存在一個大爆炸奇點。如果你在時間前進方向上按照科學定律演化這樣的宇宙,你就會得到你一開始給定的那個成團的無規則的態。這樣,必定存在不會產生我們今天所觀察到的宇宙的初始結構。所以,就連暴漲模型也沒有告訴我們,為何初始結構不是那種產生和我們觀測到的非常不同的宇宙的某種態。我們是否應該轉去應用人擇原理以求解釋呢?難道所有這一切僅僅是因為好運氣?看來,這只是無望的遁詞,是對我們理解宇宙內在秩序的所有希望的否定。

為了預言宇宙應該是如何開始的,人們需要在時間開端處有效的定律。羅傑·彭羅斯和我證明的奇點定理指出,如果廣義相對論的經典理論是正確的,則時間的開端是具有無限密度和無限空間——時間曲率的一點,在這一點上所有已知的科學定律都失效。人們可以設想存在在奇點處成立的新定律,但是在如此不守規矩的點處,甚至連表述這樣的定律都是非常困難的,而且從觀察中我們沒有得到關於這些定律應是什麼樣子的任何提示。然而,奇點定理真正表明的是,該處引力場變得如此之強,以至於量子引力效應變得重要:經典理論不再能很好地描述宇宙。所以,人們必須用量子引力論去討論宇宙的極早期階段。我們將會看到,在量子力學中,通常的科學定律有可能在任何地方都有效,包括時間開端這一點在內:不必針對奇點提出新的定律,因為在量子理論中不須有任何奇點。

我們仍然沒有一套完整而協調的理論,它將量子力學和引力結合在一起。然而,我們相當清楚這樣一套統一理論所應該具有的某些特徵。其中一個就是它必須和費因曼提出的按照對歷史求和的量子力學表述相一致。在這種方法里,一個粒子不像在經典理論中那樣,不僅只有一個歷史。相反的,它被認為是通過空間——時間裡的每一可能的路徑,每一條途徑有一對相關的數,一個代表波的幅度,另一個代表它的相位。粒子通過一指定點的概率是將通過此點的所有可能途徑的波迭加而求得。然而,當人們實際去進行這些求和時,就遇到了嚴重的技術問題。迴避這個問題的唯一獨特的方法是:你必須不是對發生在你我經驗的「實」的時間內的,而是對發生在所謂「虛」的時間內的粒子的途徑的波進行求和。虛時間可能聽起來像科學幻想,但事實上,它是定義得很好的數學概念。如果你取任何平常的(或「實的」)數和它自己相乘, 結果是一個正數。(例如2乘2是4,但-2乘-2也是這麼多)。然而,有一種特別的數(叫虛數),當它們自乘時得到負數。(在這兒的虛數單位叫做i, 它自乘時得-1,2i自乘得-4,等等。)人們必須利用虛時間,以避免在進行費因曼對歷史求和的技術上的困難。也就是為了計算的目的人們必須用虛數而不是用實數來測量時間。這對空間—時間有一有趣的效應:時間和空間的區別完全消失。事件具有虛值時間坐標的空間—時間被稱為歐幾里德型的,它是採用建立了二維面幾何的希臘人歐幾里德的名字命名的。我們現在稱之為歐幾里德空間—時間的東西除了是四維而不是二維以外,其餘的和它非常相似。在歐幾里德空間—時間中,時間方向和空間方向沒有不同之處。另一方面,在通常用實的時間坐標來標記事件的實的空間—時間裡,人們很容易區別這兩種方向——在光錐中的任何點是時間方向,之外為空間方向。就日常的量子力學而言,在任何情況下,我們利用虛的時間和歐幾里德空間—時間可以認為僅僅是一個計算實空間—時間的答案的數學手段(或技巧)。

我們相信,作為任何終極理論的一部分而不可或缺的第二個特徵是愛因斯坦的思想,即引力場是由彎曲的空間—時間來代表:粒子在彎曲空間中試圖沿著最接近於直線的某種途徑走,但因為空間—時間不是平坦的。它們的途徑看起來似乎被引力場折彎了。當我們用費因曼的路徑求和方法去處理愛因斯坦的引力觀點時,和粒子的歷史相類似的東西則是代表整個宇宙歷史的完整的彎曲的空間—時間。為了避免實際進行歷史求和的技術困難,這些彎曲的空間—時間必須採用歐幾里德型的。也就是,時間是虛的並和空間的方向不可區分。為了計算找到具有一定性質,例如在每一點和每一方向上看起來都一樣的實的空間—時間的概率,人們將和所有具有這性質的歷史相關聯的波迭加起來即可。

在廣義相對論的經典理論中,有許多不同的可能彎曲的空間—時間,每一個對應於宇宙的不同的初始態。如果我們知道宇宙的初始態,我們就會知道它的整個歷史。類似地,在量子引力論中,存在許多不同的可能的宇宙量子態。如果我們知道在歷史求和中的歐幾里德彎曲空間—時間在早先時刻的行為,我們就會知道宇宙的量子態。

在以實的空間—時間為基礎的經典引力論中,宇宙可能的行為只有兩種方式:或者它已存在了無限長時間,或者它在有限的過去的某一時刻的奇點上有一個開端。而在量子引力論中,還存在第三種可能性。因為人們是用歐幾里德空間—時間,在這兒時間方向和空間方向是同等的,所以空間—時間只有有限的尺度,卻沒有奇點作為它的邊界或邊緣是可能的。空間—時間就像是地球的表面,只不過多了兩維。地球的表面積是有限的,但它沒有邊界或邊緣:如果你朝著落日的方向駕船,你不會掉到邊緣外面或陷入奇點中去。(因為我曾經環球旅行過,所以知道!)

如果歐幾里德空間—時間延伸到無限的虛時間,或者在一個虛時間奇點處開始,我們就有了和在經典理論中指定宇宙初態的同樣問題,即上帝可以知道宇宙如何開始,但是我們提不出任何特別原因,認為它應以這種而不是那種方式開始。另一方面,量子引力論開闢了另一種新的可能性,在這兒空間—時間沒有邊界,所以沒有必要指定邊界上的行為。這兒就沒有使科學定律失效的奇點,也就是不存在在該處必須祈求上帝或某些新的定律給空間一時間設定邊界條件的空間—時間邊緣。人們可以說:「宇宙的邊界條件是它沒有邊界。」宇宙是完全自足的,而不被任何外在於它的東西所影響。它既不被創生,也不被消滅。它就是存在。

我正是在早先提到的那次梵帝岡會議上第一次提出,時間和空間可能會共同形成一個在尺度上有限而沒有任何邊界或邊緣的面。然而我的論文數學氣息太濃,所以文章中包含的上帝在創造宇宙的作用的含義在當時沒有被普遍看出來(對我也正是如此)。在梵蒂岡會議期間,我不知道如何用「無邊界」思想去預言宇宙。然而,第二年夏天我在加州大學的聖他巴巴拉分校渡過。我的一位朋友兼合作者詹姆·哈特爾在那裡,他和我共同得出了如果空間—時間沒有邊界時宇宙應滿足的條件。回到劍橋後,我和我的兩個研究生朱麗安·拉卻爾和約納遜·哈里威爾繼續從事這項工作。

我要著重說明,時間一空間是有限而無界的思想僅僅只是一個設想,它不能從其他原理導出。正如任何其他的科學理論,它原先可以是出於美學或形而上學的原因而被提出,但是對它的真正檢驗在於它所給出的預言是否與觀測相一致。然而,在量子引力的情況下,由於以下兩個原因這很難確定。首先,正如將在下一章所要解釋的,雖然我們對能將廣義相對論和量子力學結合在一起的理論所應具有的特徵,已經知道得相當多,但我們還不能準確地認定這樣一個理論。其次,任何詳盡描述整個宇宙的模型在數學上都過於複雜,以至於我們不能通過計算做出準確的預言。所以,人們不得不做簡化的假設和近似——並且甚至這樣,要從中引出預言仍是令人生畏的問題。

在對歷史求和中的每一個歷史不只描述空間—時間,而且描述在其中的任何東西——包括像能觀察宇宙歷史的人類那樣複雜的生物。這可對人擇原理提供另一個支持,因為如果任何歷史都是可能的,就可以用人擇原理去解釋為何我們發現宇宙是現今這樣子。儘管我們對自己並不生存於其中的其他歷史究竟有什麼意義還不清楚。然而,如果利用對歷史求和可以顯示,我們的宇宙不只是一個可能的,而且是最有可能的歷史,則這個量子引力論的觀點就會令人滿意得多。為此,我們必須對所有可能的沒有邊界的歐幾里德空間—時間進行歷史求和。

人們從無邊界假定得知,宇宙沿著大多數歷史的機會是可以忽略不計的,但是有一族特別的歷史比其他的歷史有更多機會。這些歷史可以描繪得像是地球的表面。在那兒與北極的距離代表虛的時間,並且離北極等距離的圓周長代表宇宙的空間尺度。宇宙是從作為單獨一點的北極開始的。當你一直往南走去,離開北極等距離的緯度圈變大, 這是和宇宙隨虛時間的膨脹相對應(圖8.1)。宇宙在赤道處達到最大的尺度,並且隨著虛時間的繼續增加而收縮,最後在南極收縮成一點。儘管宇宙在北南二極的尺度為零,這些點不是奇點,並不比地球上的北南二極更奇異。科學定律在這兒有效,正如同它仍在地球上的北南二極有效一樣。

圖8.1

然而,在實的時間裡宇宙的歷史顯得非常不一樣。大約在100或200億年以前,它有一個最小的尺度,這相當於在虛時間裡的最大的半徑。在後來的實時間裡,宇宙就像由林德設想的紊亂暴漲模型那樣地膨脹(但是現在人們不必假定宇宙是從某一類正確的狀態產生出來)。宇宙會膨脹到一個非常大的尺度,並最終重新坍縮成為在實時間裡看起來像是奇點的一個東西。這樣,在某種意義上說,即使我們躲開黑洞,仍然是註定要毀滅的。只有當我們按照虛時間來描繪宇宙時才不會有奇點。

如果宇宙確實處在這樣的一個量子態里,在虛時間裡宇宙就沒有奇點。所以,我近期的工作似乎完全使我早期研究奇點的工作成果付之東流。但是正如上面所指出的,奇點定理的真正重要性在於,它們指出引力場必然會強到不能無視量子引力效應的程度。這接著導致也許在虛時間裡宇宙的尺度有限但沒有邊界或奇點的觀念。然而,當人們回到我們生活於其中的實時間,那兒仍會出現奇點。陷進黑洞那位可憐的航天員的結局仍然是極可悲的;只有當他在虛時間裡生活,才不會遭遇到奇點。

上述這些也許暗示所謂的虛時間是真正的實時間,而我們叫做實時間的東西恰恰是子虛烏有的空想的產物。在實時間中,宇宙的開端和終結都是奇點。這奇點構成了科學定律在那兒不成立的空間—時間邊界。但是,在虛時間裡不存在奇點或邊界。所以,很可能我們稱之為虛時間的才真正是更基本的觀念,而我們稱作實時間的反而是我們臆造的,它有助於我們描述宇宙的模樣。但是,按照我在第一章所描述的方法,科學理論僅僅是我們用以描述自己所觀察的數學模型,它只存在於我們的頭腦中。所以去問諸如這樣的問題是毫無意義的:「實」的或「虛」的時間,哪一個是實在的?這僅僅是哪一個描述更為有用的問題。

人們還可以利用對歷史求和以及無邊界假設去發現宇宙的哪些性質可能發生。例如,人們可以計算,當宇宙具有現在密度的某一時刻,在所有方向上以幾乎同等速率膨脹的概率。在迄今已被考察的簡化的模型中,發現這個概率是高的;也就是,無邊界假設導致一個預言,即宇宙現在在每一方向的膨脹率幾乎相同是極其可能的。這與微波背景輻射的觀測相一致,它指出在任何方向上具有幾乎完全同樣的強度。如果宇宙在某些方向比其他方向膨脹得更快,在那些方向輻射的強度就會被一個附加的紅移所減小。

人們正在研究無邊界條件的進一步預言。一個特別有趣的問題是,早期宇宙中物質密度對其平均值小幅度的偏離,這些偏離首先引起星系,然後是恆星,最後是我們自身的形成。測不準原理意味著,早期宇宙不可能是完全均勻的,因為粒子的位置和速度必定有一些不確定性或起伏。利用無邊界條件,我們發現,宇宙事實上必須是從僅僅由測不準原理允許的最小的可能的非均勻性開始的。然後,正如在暴漲模型中預言的一樣,宇宙經歷了一個快速膨脹時期。在這個期間,開初的非均勻性被放大到足以解釋在我們周圍觀察到的結構的起源。在一個各處物質密度稍有變化的膨脹宇宙中,引力使得較緊密區域的膨脹減慢,並使之開始收縮。這就導致星系、恆星和最終甚至像我們自己這樣微不足道的生物的形成。因而,我們在宇宙中看到的所有複雜的結構,可由宇宙無邊界條件和量子力學中的測不準原理給予解釋。

空間和時間可以形成一個沒有邊界的閉曲面的思想,對於上帝在宇宙事務中的作用還有一個深遠的含義。隨著科學理論在描述事件的成功,大部分人進而相信上帝允許宇宙按照一套定律來演化,而不介入其間促使宇宙觸犯這些定律。然而,定律並沒有告訴我們,宇宙的太初應像什麼樣子——它依然要靠上帝卷緊發條,並選擇如何去啟動它。只要宇宙有一個開端,我們就可以設想存在一個造物主。但是,如果宇宙確實是完全自足的、沒有邊界或邊緣,它就既沒有開端也沒有終結——它就是存在。那麼,還會有造物主存身之處嗎?

第九章 時間箭頭

我們在前幾章中看到了,長期以來人們關於時間性質的觀點是如何變化的。直到本世紀初,人們還相信絕對時間。也就是說,每一事件可由一個稱為「時間」的數以唯一的方式來標記,所有好的鐘在測量兩個事件之間的時間間隔上都是一致的。然而,對於任何正在運動的觀察者光速總是一樣的這一發現,導致了相對論;而在相對論中,人們必須拋棄存在一個唯一的絕對時間的觀念。代之以每個觀察者攜帶的鐘所記錄的他自己的時間測量——不同觀察者攜帶的鐘不必要讀數一樣。這樣,對於進行測量的觀察者而言,時間變成一個更主觀的概念。

當人們試圖統一引力和量子力學時,必須引入「虛」時間的概念。虛時間是不能和空間方向區分的。如果一個人能往北走,他就能轉過頭並朝南走;同樣的,如果一個人能在虛時間裡向前走,他應該能夠轉過來並往後走。這表明在虛時間裡,往前和往後之間不可能有重要的差別。另一方面,當人們考察「實」時間時,正如眾所周知的,在前進和後退方向存在有非常巨大的差別。這過去和將來之間的差別從何而來?為何我們記住過去而不是將來?

科學定律並不區別過去和將來。更精確地講,正如前面所解釋的,科學定律在稱作C、 P和T的聯合作用(或對稱)下不變。(C是指將反粒子來替代粒子;P的意思是取鏡象, 這樣左和右就互相交換了;T是指顛倒所有粒子的運動方向,也就是使運動倒退回去。)在所有正常情形下,制約物體行為的科學定律在CP聯合對稱下不變。換言之,對於其他行星上的居民,若他們是我們的鏡像並且由反物質而不是物質構成,則生活會剛好是同樣的。

如果科學定律在CP聯合對稱以及CPT聯合對稱下都不變,它們也必須在單獨的T對稱下不變。然而,在日常生活的實時間中,前進和後退的方向之間還是有一個大的差異。想像一杯水從桌子上滑落到地板上被打碎。如果你將其錄像,你可以容易地辨別出它是向前進還是向後退。如果將其倒回來,你會看到碎片忽然集中到一起離開地板,並跳回到桌子上形成一個完整的杯子。你可斷定錄像是在倒放,因為這種行為在日常生活中從未見過。如果這樣的事發生,陶瓷業將無生意可做。

為何我們從未看到碎杯子集合起來,離開地面並跳回到桌子上,通常的解釋是這違背了熱力學第二定律所表述的在任何閉合系統中無序度或熵總是隨時間而增加。換言之,它是穆菲定律的一種形式:事情總是趨向于越變越糟:桌面上一個完整的杯子是一個高度有序的狀態,而地板上破碎的杯子是一個無序的狀態。人們很容易從早先桌子上的杯子變成後來地面上的碎杯子,而不是相反。

無序度或熵隨著時間增加是一個所謂的時間箭頭的例子。時間箭頭將過去和將來區別開來,使時間有了方向。至少有三種不同的時間箭頭:第一個,是熱力學時間箭頭,即是在這個時間方向上無序度或熵增加;然後是心理學時間箭頭,這就是我們感覺時間流逝的方向,在這個方向上我們可以記憶過去而不是未來;最後,是宇宙學時間箭頭,在這個方向上宇宙在膨脹,而不是收縮。

我將在這一章論斷,宇宙的無邊界條件和弱人擇原理一起能解釋為何所有的三個箭頭指向同一方向。此外,為何必須存在一個定義得很好的時間箭頭。我將論證心理學箭頭是由熱力學箭頭所決定,並且這兩種箭頭必須總是指向相同的方向。如果人們假定宇宙的無邊界條件,我們將看到必然會有定義得很好的熱力學和宇宙學時間箭頭。但對於宇宙的整個歷史來說,它們並不總是指向同一方向。然而,我將指出,只有當它們指向一致時,對於能夠發問為何無序度在宇宙膨脹的時間方向上增加的智力生命的發展,才有合適的條件。

首先,我要討論熱力學時間箭頭。總存在著比有序狀態更多得多的無序狀態的這一事實,是使熱力學第二定律存在的原因。譬如,考慮一盒拼板玩具,存在一個並且只有一個使這些小紙片拼成一幅完整圖畫的排列。另一方面,存在巨大數量的排列,這時小紙片是無序的,不能拼成一幅畫。

假設一個系統從這少數的有序狀態之中的一個出發。隨著時間流逝,這個系統將按照科學定律演化,而且它的狀態將改變。到後來,因為存在著更多的無序狀態,它處於無序狀態的可能性比處於有序狀態的可能性更大。這樣,如果一個系統服從一個高度有序的初始條件,無序度會隨著時間的增加而增大。

假定拼板玩具盒的紙片從能排成一幅圖畫的有序組合開始,如果你搖動這盒子,這些紙片將會採用其他組合,這可能是一個不能形成一幅合適圖畫的無序的組合,就是因為存在如此之多得多的無序的組合。有一些紙片團仍可能形成部份圖畫,但是你越搖動盒子,這些團就越可能被分開,這些紙片將處於完全混亂的狀態,在這種狀態下它們不能形成任何種類的圖畫。這樣,如果紙片從一個高度有序的狀態的初始條件出發,紙片的無序度將可能隨時間而增加。

然而,假定上帝決定不管宇宙從何狀態開始,它都必須結束於一個高度有序的狀態,則在早期這宇宙有可能處於無序的狀態。這意味著無序度將隨時間而減小。你將會看到破碎的杯子集合起來並跳回到桌子上。然而,任何觀察杯子的人都生活在無序度隨時間減小的宇宙中,我將論斷這樣的人會有一個倒溯的心理學時間箭頭。這就是說,他們會記住將來的事件,而不是過去的事件。當杯子被打碎時,他們會記住它在桌子上的情形;但是當它是在桌子上時,他們不會記住它在地面上的情景。

由於我們不知道大腦工作的細節,所以討論人類的記憶是相當困難的。然而,我們確實知道計算機的記憶器是如何工作的。所以,我將討論計算機的心理學時間箭頭。我認為,假定計算機和人類有相同的箭頭是合理的。如果不是這樣,人們可能因為擁有一台記住明年價格的計算機而使股票交易所垮台。

大體來說,計算機的記憶器是一個包含可存在於兩種狀態中的任一種狀態的元件的設備,算盤是一個簡單的例子。其最簡單的形式是由許多鐵條組成;每一根鐵條上有一念珠,此念珠可呆在兩個位置之中的一個。在計算機記憶器進行存儲之前,其記憶器處於無序態,念珠等幾率地處於兩個可能的狀態中。(算盤珠雜亂無章地散布在算盤的鐵條上)。在記憶器和所要記憶的系統相互作用後,根據系統的狀態,它肯定處於這種或那種狀態(每個算盤珠將位於鐵條的左邊或右邊。)這樣,記憶器就從無序態轉變成有序態。然而,為了保證記憶器處於正確的狀態,需要使用一定的能量(例如,移動算盤珠或給計算機接通電源)。這能量以熱的形式耗散了,從而增加了宇宙的無序度的量。人們可以證明,這個無序度增量總比記憶器本身有序度的增量大。這樣,由計算機冷卻風扇排出的熱量表明計算機將一個項目記錄在它的記憶器中時,宇宙的無序度的總量仍然增加。計算機記憶過去的時間方向和無序度增加的方向是一致的。

所以,我們對時間方向的主觀感覺或心理學時間箭頭,是在我們頭腦中由熱力學時間箭頭所決定的。正像一個計算機,我們必須在熵增加的順序上將事物記住。這幾乎使熱力學定律變成為無聊的東西。無序度隨時間的增加乃是因為我們是在無序度增加的方向上測量時間。拿這一點來打賭,準保你會贏。

但是究竟為何必須存在熱力學時間箭頭?或換句話說,在我們稱之為過去時間的一端,為何宇宙處於高度有序的狀態?為何它不在所有時間裡處於完全無序的狀態?畢竟這似乎更為可能。並且為何無序度增加的時間方向和宇宙膨脹的方向相同?

在經典廣義相對論中,因為所有已知的科學定律在大爆炸奇點處失效,人們不能預言宇宙是如何開始的。宇宙可以從一個非常光滑和有序的狀態開始。這就會導致正如我們所觀察到的、定義很好的熱力學和宇宙學的時間箭頭。但是,它可以同樣合理地從一個非常波浪起伏的無序狀態開始。在那種情況下,宇宙已經處於一種完全無序的狀態,所以無序度不會隨時間而增加。或者它保持常數,這時就沒有定義很好的熱力學時間箭頭;或者它會減小,這時熱力學時間箭頭就會和宇宙學時間箭頭相反向。任何這些可能性都不符合我們所觀察到的情況。然而,正如我們看到的,經典廣義相對論預言了它自身的崩潰。當空間——時間曲率變大,量子引力效應變得重要,並且經典理論不再能很好地描述宇宙時,人們必須用量子引力論去理解宇宙是如何開始的。

正如我們在上一章看到的,在量子引力論中,為了指定宇宙的態,人們仍然必須說清在過去的空間—時間的邊界的宇宙的可能歷史是如何行為的。只有如果這些歷史滿足無邊界條件,人們才可能避免這個不得不描述我們不知道和無法知道的東西的困難:它們在尺度上有限,但是沒有邊界、邊緣或奇點。在這種情形下,時間的開端就會是規則的、光滑的空間—時間的點,並且宇宙在一個非常光滑和有序的狀態下開始它的膨脹。它不可能是完全均勻的,否則就違反了量子理論不確定性原理。必然存在密度和粒子速度的小起伏,然而無邊界條件意味著,這些起伏又是在與不確定性原理相一致的條件下儘可能的小。

宇宙剛開始時有一個指數或「暴漲」的時期,在這期間它的尺度增加了一個非常大的倍數。在膨脹時,密度起伏一開始一直很小,但是後來開始變大。在密度比平均值稍大的區域,額外質量的引力吸引使膨脹速度放慢。最終,這樣的區域停止膨脹,並坍縮形成星系、恆星以及我們這樣的人類。宇宙開始時處於一個光滑有序的狀態,隨時間演化成波浪起伏的無序的狀態。這就解釋了熱力學時間箭頭的存在。

如果宇宙停止膨脹並開始收縮將會發生什麼呢?熱力學箭頭會不會倒轉過來,而無序度開始隨時間減少呢?這為從膨脹相存活到收縮相的人們留下了五花八門的科學幻想的可能性。他們是否會看到杯子的碎片集合起來離開地板跳回到桌子上去?他們會不會記住明天的價格,並在股票市場上發財致富?由於宇宙至少要再等一百億年之後才開始收縮,憂慮那時會發生什麼似乎有點學究氣。但是有一種更快的辦法去查明將來會發生什麼,即跳到黑洞裡面去。恆星坍縮形成黑洞的過程和整個宇宙的坍縮的後期相當類似;這樣,如果在宇宙的收縮相無序度減小,可以預料它在黑洞裡面也會減小。所以,一個落到黑洞里去的航天員能在投賭金之前,也許能依靠記住輪賭盤上球兒的走向而贏錢。(然而,不幸的是,玩不了多久,他就會變成義大利麵條。他也不能使我們知道熱力學箭頭的顛倒,或者甚至將他的贏錢存入銀行,因為他被困在黑洞的事件視界後面。)

起初,我相信在宇宙坍縮時無序度會減小。這是因為,我認為宇宙再變小時,它必須回到光滑和有序的狀態。這表明,收縮相僅僅是膨脹相的時間反演。處在收縮相的人們將以倒退的方式生活:他們在出生之前即已死去,並且隨著宇宙收縮變得更年輕。

這個觀念是吸引人的,因為它表明在膨脹相和收縮相之間存在一個漂亮的對稱。然而,人們不能置其他有關宇宙的觀念於不顧,而只採用這個觀念。問題在於:它是否由無邊界條件所隱含或它是否與這個條件不相協調?正如我說過的,我起先以為無邊界條件確實意味著無序度會在收縮相中減小。我之所以被誤導,部分是由於與地球表面的類比引起的。如果人們將宇宙的開初對應於北極,那麼宇宙的終結就應該類似於它的開端,正如南極之與北極相似。然而,北南二極對應於虛時間中的宇宙的開端和終結。在實時間裡的開端和終結之間可有非常大的差異。我還被我作過的一項簡單的宇宙模型的研究所誤導,在此模型中坍縮相似乎是膨脹相的時間反演。然而,我的一位同事,賓夕凡尼亞州立大學的當·佩奇指出,無邊界條件沒有要求收縮相必須是膨脹相的時間反演。我的一個學生雷蒙·拉夫勒蒙進一步發現,在一個稍複雜的模型中,宇宙的坍縮和膨脹非常不同。我意識到自己犯了一個錯誤:無邊界條件意味著事實上在收縮相時無序度繼續增加。當宇宙開始收縮時或在黑洞中熱力學和心理學時間箭頭不會反向。

當你發現自己犯了這樣的錯誤後該如何辦?有些人從不承認他們是錯誤的,而繼續去找新的往往互相不協調的論據為自己辯解——正如愛丁頓在反對黑洞理論時之所為。另外一些人首先宣稱,從來沒有真正支持過不正確的觀點,如果他們支持了,也只是為了顯示它是不協調的。在我看來,如果你在出版物中承認自己錯了,那會好得多並少造成混亂。愛因斯坦即是一個好的榜樣,他在企圖建立一個靜態的宇宙模型時引入了宇宙常數,他稱此為一生中最大的錯誤。

回頭再說時間箭頭,餘下的問題是;為何我們觀察到熱力學和宇宙學箭頭指向同一方向?或換言之,為何無序度增加的時間方向正是宇宙膨脹的時間方向?如果人們相信,按照無邊界假設似乎所隱含的那樣,宇宙先膨脹然後重新收縮,那麼為何我們應在膨脹相中而不是在收縮相中,這就成為一個問題。

人們可以在弱人擇原理的基礎上回答這個問題。收縮相的條件不適合於智慧人類的存在,而正是他們能夠提出為何無序度增加的時間方向和宇宙膨脹的時間方向相同的問題。無邊界假設預言的宇宙在早期階段的暴漲意味著,宇宙必須以非常接近為避免坍縮所需要的臨界速率膨脹,這樣它在很長的時間內才不至坍縮。到那時候所有的恆星都會燒盡,而在其中的質子和中子可能會衰變成輕粒子和輻射。宇宙將處於幾乎完全無序的狀態,這時就不會有強的熱力學時間箭頭。由於宇宙已經處於幾乎完全無序的狀態,無序度不會增加很多。然而,對於智慧生命的行為來說,一個強的熱力學箭頭是必需的。為了生存下去,人類必須消耗能量的一種有序形式——食物,並將其轉化成能量的一種無序形式——熱量,所以智慧生命不能在宇宙的收縮相中存在。這就解釋了,為何我們觀察到熱力學和宇宙學的時間箭頭指向一致。並不是宇宙的膨脹導致無序度的增加,而是無邊界條件引起無序度的增加,並且只有在膨脹相中才有適合智慧生命的條件。

總之,科學定律並不能區分前進和後退的時間方向。然而,至少存在有三個時間箭頭將過去和將來區分開來。它們是熱力學箭頭,這就是無序度增加的時間方向;心理學箭頭,即是在這個時間方向上,我們能記住過去而不是將來;還有宇宙學箭頭,也即宇宙膨脹而不是收縮的方向。我指出了心理學箭頭本質上應和熱力學箭頭相同。宇宙的無邊界假設預言了定義得很好的熱力學時間箭頭,因為宇宙必須從光滑、有序的狀態開始。並且我們看到,熱力學箭頭和宇宙學箭頭的一致,乃是由於智慧生命只能在膨脹相中存在。收縮相是不適合於它的存在的,因為那兒沒有強的熱力學時間箭頭。

人類理解宇宙的進步,是在一個無序度增加的宇宙中建立了一個很小的有序的角落。 如果你記住了這本書中的每一個詞,你的記憶就記錄了大約200萬單位的信息——你頭腦中的有序度就增加了大約200萬單位。 然而,當你讀這本書時,你至少將以食物為形式的1千卡路里的有序能量, 轉換成為以對流和汗釋放到你周圍空氣中的熱量的形式的無序能量。這就將宇宙的無序度增大了大約20億億億單位,或大約是你頭腦中有序度增量——那是如果你記住這本書的每一件事的話——的1干億億倍。我試圖在下一章更增加一些我們頭腦的有序度,解釋人們如何將我描述過的部分理論結合一起,形成一個完整的統一理論,這個理論將適用於宇宙中的任何東西。

第十章 物理學的統一

正如在第一章中所解釋的,一下子建立一個包括宇宙中每一件東西的完整的統一理論是非常困難的。取而代之,我們在尋求描述發生在有限範圍的部分理論方面取得了進步。我們忽略了其他效應,或者將它們用一定的數字來近似。(例如,當我們用化學來計算原子間的相互作用時,可以不管原子核內部的結構。)然而,最終人們希望找到一個完整的、協調的、將所有這些部分理論當作它的近似的統一理論。在這理論中不需要選取特定的任意數值去符合事實。尋找這樣的一個理論被稱之為「物理學的統一」。愛因斯坦用他晚年的大部分時間去尋求一個統一理論,但是沒有成功,因為儘管已有了引力和電磁力的部份理論,但關於核力還知道得非常少,所以時間還沒成熟。並且,儘管他本人對量子力學的發展起過重要作用,但他拒絕相信它的真實性。看來,不確定性原理還是我們在其中生活的宇宙的一個基本特徵。所以,一個成功的統一理論必須將這個原理合併進去。

正如我將描述的,由於我們對宇宙知道得這麼多,現在找到這樣的一個理論的前景似乎是好得多了。但是我們必須小心,不要過份自信——我們在過去有過錯誤的奢望!例如,在本世紀初,曾經以為每件東西都可以按照連續物質(諸如彈性和熱導)的性質予以解釋。原子結構和不確定性原理的發現使之徹底破產。然後又有一次,1928年物理學家、諾貝爾獎獲得者馬克斯·玻恩告訴一群來哥丁根大學的訪問者: 「據我們所知,物理學將在6個月之內結束。」他的信心是基於狄拉克新近發現的能夠制約電子的方程。人們認為質子——這個當時僅知的另一種粒子——服從類似的方程,並且這是理論物理的終結。然而,中子和核力的發現對此又是當頭一棒。講到這些,在謹慎樂觀的基礎上,我仍然相信,我們可能已經接近於探索自然的終極定律的終點。

在前幾章中,我描述了引力的部分理論即廣義相對論和制約弱、強和電磁力的部分理論。 這後三種理論可以合併成為所謂的大統一理論(GUT)。這個理論並不令人非常滿意,因為它沒有包括引力,並且因為包含譬如不同粒子的相對質量等不能從理論預言,而必須人為選擇以適合觀測的一些量。要找到一個將引力和其他力相統一的理論,困難在於廣義相對論是一個「經典」理論;也就是說,它沒有將量子力學不確定性原理合併在裡面。另一方面,其他的部分理論以非常基本的形式依賴於量子力學,所以第一步必須將廣義相對論和量子力學結合在一起。正如我們已經看到的,這能產生一些顯著的推論,例如黑洞不是黑的;宇宙沒有任何奇點並且是完全自足的、沒有邊界的。正如第七章所解釋的,麻煩在於不確定性原理意味著甚至「空的」空間也是充滿了虛的粒子和反粒子,這些粒子對具有無限的能量,並且由愛因斯坦的著名方程E=mc^2可知, 這些粒子具有無限的質量。這樣,它們的引力的吸引就會將宇宙捲曲到無限小的尺度。

相當類似地,在其他部分理論中也發生頗似荒謬的無限大,然而,所有這些情形下的無限大都可用稱之為重正化的過程消除掉。這牽涉到引入其他的無限大去消除這些無限大。雖然在數學上這個技巧相當令人懷疑,而在實際上似乎確實行得通,並用來和這些理論一起作出預言,這預言極其精確地和觀測相一致。然而,從企圖找到一個完全理論的觀點看,由於重正化意味著質量和力的強度的實際值不能從理論中得到預言,必須被選擇以去適合觀測,因此重正化有一嚴重的缺陷。

試圖將不確定性原理合併到廣義相對論時,人們只有兩個可以調整的量:引力強度和宇宙常數的值。但是調整它們不足以消除所有的無窮大。所以人們得到一個理論,它似乎預言了諸如空間一時間的曲率的某些量真的是無窮大,但是觀察和測量表明它們地地道道是有限的!人們對於合併廣義相對論和不確定性原理的問題懷疑了許久,直到 1972年才為仔細的計算所最後確證。4年之後,人們提出了一種叫做「超引力」 的可能的解答。它的思想是將攜帶引力的自旋為2稱為引力子的粒子和某些其他具有自旋為3/2、1、1/2和0的新粒子結合在一起。在某種意義上,所有這些粒子可認為是同一「超粒子」的不同側面。這樣就將自旋為1/2和3/2的物質粒子和自旋為0、 1和2的攜帶力的粒子統一起來了。自旋1/2和3/2的虛的粒子反粒子對具有負能量, 因此抵消了自旋為2、1和0的虛的粒子對的正能量。這就使得許多可能的無限大被抵消掉。但是人們懷疑,某些無窮大仍然存在。然而,人們需要找出是否還留下未被抵消的無窮大,這計算是如此之冗長和困難,以至於沒有人會準備著手去進行。 即使使用一個計算機,預料至少要用4年功夫,而且犯至少一個或更多錯誤的機會是非常高的。這樣,只有其他人重複計算,並得到同樣的答案,人們才能判斷已取得了正確的答案,但這似乎是不太可能的!

儘管存在這些問題,儘管超引力理論中的粒子似乎不與觀察到的粒子相符合的這一事實,大部分科學家仍然相信,超引力可能是對於物理學統一問題的正確答案。看來它是將引力和其他力相統一起來的最好辦法。然而1984年,人們的看法顯著地改變為更喜歡所謂的弦理論。在這些理論中,基本的對象不再是只佔空間單獨的點的粒子,而是只有長度而沒有其他線度、像是一根無限細的弦這樣的東西。這些弦可以有端點(所謂的開弦),或它們可以自身首尾相接成閉合的圈子(閉弦)(圖10.1和圖10.2)。在每一時刻每一個粒子佔據空間的一點。這樣,它的歷史可以在空間一時間用一根線代表(「世界線」)。另一方面,在每一時刻一根弦佔據空間的一根線。所以它在空間—時間裡的歷史是一個叫做世界片的二維面(在這世界片上的任一點都可用兩個數來描述:一個指明時間,另一個指明這一點在弦上的位置。)一根開弦的世界片是一帶子, 它的邊緣代表弦的端點通過空間—時間的路徑 (圖10.1);一根閉弦的世界片是一個圓柱或一個管(圖10.2);一個管的截面是一個圈,它代表在一特定時刻的弦的位置。

圖10.1 圖10.2

兩根弦可以連接在一起,形成一根單獨的弦。在開弦的情形下只要將它們端點連在一起即可(圖10.3) ; 在閉弦的情形下,像是兩條褲腿合併成一條褲子(圖10.4)。類似地,一根單獨的弦可以分成兩根弦。在弦理論中,原先以為是粒子的東西,現在被描繪成在弦里傳播的波動,如同振動著的風箏的弦上的波動。一個粒子從另一個粒子發射出來或者被吸收,對應於弦的分解和合併。例如,太陽作用到地球上的引力,在粒子理論中被描述成由太陽上的粒子發射出並被地球上的粒子所吸收的引力子(圖10.5)。在弦理論中,這個過程相應於一個H形狀的管(圖10.6)(弦理論有點像管道工程) 。H的兩個垂直的邊對應於太陽和地球上的粒子,而水平的橫杠對應於在它們之間傳遞的引力子。

圖10.3

圖10.4

圖10.5 圖10.6

弦理論有一個古怪的歷史。它原先是60年代後期發明來試圖找出一個描述強作用的理論。其方法是,諸如質子和中子這樣的粒子可被認為是一根弦上的波動。這些粒子之間的強作用力對應於連接於其他一些弦之間的弦的片段——正如蜘蛛網一樣。這弦必須像具有大約10噸拉力的橡皮帶,才能使理論給出粒子之間強作用力的觀察值。

1974年,巴黎的朱勒·謝爾克和加州理工學院的約翰·施瓦茲發表了一篇論文,指出弦理論可以描述引力, 但是只不過其張力要大得多,大約是1千萬億億億億噸(1後面跟39個0)。在通常尺度下,弦理論和廣義相對論的預言是相同的,但在非常小的尺度下, 比十億億億億分之一厘米(1厘米被1後面跟33個0除)更小時,它們就不一樣了。然而,他們的工作並沒有引起很大的注意,因為大約正是那時候。大多數人拋棄了原先的強作用力的弦理論,而傾心於夸克和膠子的理論,後者似乎和觀測符合得好得多。謝爾剋死得很慘(他受糖尿病折磨,在周圍沒人給他注射胰島素時昏迷死去)。這樣一來,施瓦茲幾乎成為弦理論的唯一支持者,只不過現在設想的弦張力要大得多而已。

1984年,因為兩個明顯的原因,人們對弦理論的興趣突然復活。一個原因是,在證明超引力是有限的,以及解釋我們觀察到的粒子的種類方面,人們未能真正取得進展。另一個原因是,約翰·施瓦茲和倫敦瑪麗皇后學院的麥克·格林發表的一篇論文指出,弦理論可以解釋內稟的左旋性的粒子存在,正如我們觀察到的一些粒子那樣。不管是什麼原因,大量的人很快開始作弦理論的研究,而且發展了稱之為異形弦的新形式,這種形式似乎能夠解釋我們觀測到的粒子類型。

弦理論也導致無窮大,但是人們認為,它們在一種類似異形弦的變體中會被消除掉(雖然這一點還沒被確認)。然而,弦理論有更大的問題:似乎只有當空間—時間是十維或二十六維,而不是通常的四維時它們才是協調的!當然,額外的空間—時間維數是科學幻想的老生常談;的確,它們幾乎是必不可少的,因為否則相對論對人們不能旅行得比光更快的限制意味著,由於要花這麼長的時間,以至於在恆星和星系之間的旅行成為不可能。科學幻想的辦法是,人們可以通過更高的維數抄近路。這一點可用以下方法描述。想像我們生活的空間只有二維,並且彎曲成像一個錨圈或環的表面(圖10.7)。如果你是處在這圈的內側的一邊而要到另一邊去,你必須沿著圈的內邊緣走一圈。然而,你如果允許在第三維空間里旅行,則可以直穿過去。

圖10.7

如果這些額外的維數確實存在,為什麼我們沒有覺察到它們呢?為何我們只看到三維空間和一維時間呢?一般認為,其他的維數被彎卷到非常小的尺度——大約為1英寸的一百萬億億億分之一的空間, 人們根本無從覺察這麼小的尺度。我們只能看到一個時間和三個空間的維數,這兒空間—時間是相當平坦的。這正如一個桔子的表面:如果你靠非常近去看,它是坑坑窪窪的並有皺紋;但若離開一定的距離,你就看不見高低起伏而顯得很光滑。對於空間—時間亦是如此。因此在非常小的尺度下,空間—時間是十維的,並且是高度彎曲的;但在更大的尺度下,你看不見曲率或者額外的維數。如果這個圖像是正確的,對於自願的空間旅行者來講是個壞消息,額外附加的維實在是太小了,以至於不能允許空間飛船通過。然而,它引起了另一個重要問題:為何是一些而不是所有的維數被捲曲成一個小球?也許在宇宙的極早期所有的維都曾經非常彎曲過。為何一維時間和三維空間攤平開來,而其他的維仍然緊緊地捲曲著?

人擇原理可能提供一個答案。二維空間似乎不足以允許像我們這樣複雜生命的發展。例如,如果二維動物吃東西時不能將之完全消化,則它必須將其殘渣從吞下食物的同樣通道吐出來;因為如果有一個穿通全身的通道,它就將這生物分割成兩個分開的部分,我們的二維動物就解體了(圖10.8)。類似的,在二維動物身上實現任何血液循環都是非常困難的。

圖10.8

多於三維的空間維數也有問題。兩個物體之間的引力將隨距離衰減得比在三維空間中更快。(在三維空間內,如果距離加倍則引力減少到1/4。在四維空間減少到1/8, 五維空間1/16,等等。)其意義在於使像地球這樣繞著太陽的行星的軌道變得不穩定,地球偏離圓周軌道的最小微擾(例如由於其他行星的引力吸引)都會引起它以螺旋線的軌道向外離開或向內落到太陽上去。我們就會被凍死或者被燒死。事實上,在維數多於三維的空間中,引力隨距離變化的同樣行為意味著,太陽不可能由於壓力和引力相平衡,而存在於一個穩定的狀態,它若不被分解就會坍縮形成黑洞。在任一情況下,作為地球上生命的熱和光的來源來說,它沒有多大用處。在小尺度下,原子里使電子繞著原子核運動的電力行為正和引力一樣,這樣電子或者從原子逃逸出去,或者以螺旋的軌道落到原子核上去。在任一情形下,都不存在我們所知道的原子。

看來很清楚,至少如我們所知,生命只能存在於一維時間和三維空間沒被捲曲得很小的空間—時間區域里。這表明,只要人們可以證明弦理論至少允許存在宇宙的這樣的區域——似乎弦理論確實能做到這一點,則我們可以用弱人擇原理。同樣,也會存在宇宙的其他區域或其他宇宙(不管那是什麼含意),那裡所有的維都被捲曲得很小,或者多於四維幾乎是平坦的。但在這樣的區域里,不會有智慧生物去觀察這有效維數的不同數目。

弦理論被歡呼為物理學的終極統一理論之前,除了空間—時間呈現出來的維的數目這一問題外,還有幾個其他問題必須解決。我們還不能確定,是否所有的無窮大會被對消去,或如何準確地將弦的波動和我們所觀測到的粒子的特殊類型相關聯。儘管如此,很可能在幾年的時間裡,這些問題的答案就能找到了,並且到了本世紀末,我們將知道弦理論是否確實是長期夢寐以求的物理學的統一理論。

但是,確實存在這樣的一個統一理論嗎?或者我們也許僅僅是在追求海市屋樓。看來存在三種可能性:

(1) 確實存在一個完整的統一理論,如果我們足夠聰明的話,總有一天將會找到它。

(2) 並不存在宇宙的最終理論,僅僅存在一個越來越精確地描述宇宙的無限的理論序列。

(3) 並不存在宇宙的理論;事件在一定程度之外不可能被預言,僅僅是以一種紊亂或任意的方式發生。

有些人基於以下理由會贊同第三種可能,如果存在一套完整的定律,這將侵犯上帝改變其主意並對世界進行干涉的自由。這有點像那古老的二律背反:上帝能製造一個重到以至於它也不能將其舉起的石塊嗎?但是上帝可能要改變主意的這一思想,這正如聖·奧古斯丁指出的,是一個想像上帝存在在時間裡的虛妄的例子:時間只是上帝創造的宇宙的一個性質。可以設想,當它創造宇宙時它知道企圖做什麼!

隨著量子力學的發現,我們認識到,由於總存在一定程度的不確定性,不可能去完全精確地預言事件。如果有人願意,他可以將此紊亂性歸結為上帝的干涉。但這是一種非常奇怪的干涉:沒有任何證據表明它具有任何目的。的確,如果它有目的,則按定義就不會是紊亂的。現代由於我們重新定義科學的目標,所以已經有效地排除了上述的第三種可能性:我們的目的只在於表達一套定律,這些定律能使我們在不確定性原理的極限內預言事件。

第二種可能性,也就是存在一無限的越來越精確的理論序列,是和迄今為止我們的經驗相符合。在許多場合我們增加了測量的靈敏度,或者進行了新的類型的觀測,只是為了發現還沒被現有理論預言的新現象,為了囊括這些,我們必須發展更高級的理論。現代的大統一理論預言:在大約100吉電子伏的弱電統一能量和大約1千萬億吉電子伏的大統一能量之間,沒有什麼本質上新的現象發生。所以,如果這個預言是錯的話,人們並不會感到非常驚訝。我們的確可以預料,能夠去找幾個新的比夸克和電子——這些我們目前以為是「基本」粒子——更基本的結構層次。

然而,看來引力可以提供這個「盒子套盒子」的序列的極限。如果人們有一個比1千億億(1後面跟19個0) 吉電子伏的所謂普郎克能量更高能量的粒子,它的質量就會集中到如此的程度,以至於會脫離宇宙的其他部分,而形成一個小黑洞。這樣看來,確實當我們往越來越高的能量去的時候,越來越精密的理論序列應當有某一極限,所以必須有宇宙的終極理論。當然,普郎克能量離開大約幾百吉電子伏——目前在實驗室中所能產生的最大的能量——非常遠,我們不可能在可見的未來用粒子加速器填補其間的差距!然而,宇宙的極早期階段是這樣大能量應該發生的舞台。我以為,早期宇宙的研究和數學一致性的要求,很有可能會導致我們中的某些人在有生之年獲得一個完整的統一理論。當然,這一切都是假定我們首先不使自身毀滅的前提下而言的。

如果我們確實發現了宇宙的終極理論,這意味著什麼?正如第一章所解釋的,我們將永遠不能肯定我們是否確實找到了正確的理論,因為理論不能被證明。但是如果理論是數學上協調的並且總是給出與觀察一致的預言,我們便可以適度地有信心認為它是正確的。它將給人類為理解宇宙的智力鬥爭歷史長期的光輝篇章打上一個休止符。但是,它還會改變常人對制約宇宙定律的理解。在牛頓時代,一個受教育的人至少在梗概上掌握整個人類知識。但從那以後,科學發展的節奏使之不再可能。因為理論總是被改變以囊括新的觀察結果,它們從未被消化或簡化到使常人能理解。你必須是一個專家,即使如此,你只能希望適當地掌握科學理論的一小部分。另外,其發展的速度是如此之快,以至於在中學和大學所學的總是有點過時。只有少數人可以跟得上知識快速進步的前沿,但他們必須貢獻他們的畢生,並局限在一個小的領域裡。其餘的人對於正在進行的發展和它們產生的激動只有很少的概念。70年以前,如果愛丁頓的話是真的,那麼只有兩個人理解廣義相對論。今天,成千上萬的大學研究生能理解、並且幾百萬人至少熟悉這種思想。如果發現了一套完整的統一理論,以同樣方法將其消化並簡化,以及在學校里至少講授其梗概,這只是時間的遲早問題。我們那時就都能夠對制約宇宙的定律有所理解,並對我們的存在負責。

即使我們發現了一套完整的統一理論,由於兩個原因,這並不表明我們能一般地預言事件。第一是我們無法避免不確定性原理給我們的預言能力設立的極限。然而,更為嚴厲的是第二個限制。它是說,除了非常簡單的情形,我們不能準確解出這理論的方程。(在牛頓引力論中,我們甚至連三體運動問題都不能準確地解出,而且隨著物體的數目和理論複雜性的增加,困難愈來愈大。)除了在最極端狀態下,我們已經知道規範物體行為的定律。特別是,我們知道作為所有化學和生物基礎的基本定律。我們肯定還沒有將這些學科歸結為可解問題的狀態;我們在從數學方程來預言人類行為上只取得了很少的成功!所以,即使我們確實找到了基本定律的完整集合,在未來的歲月里,仍存在著發展得更好的近似方法,使得我們在複雜而現實的情形下,能完成對可能結果的有用預言的、這一智慧的、富有挑戰性的任務。一個完全的、協調的統一理論只是第一步,我們的目標是完全理解發生在我們周圍的事件以及我們自身的存在。

第十一章 結 論

我們發現自已是處於使人為難的世界中。我們要為自己在四周所看的一切賦予意義並問道:什麼是宇宙的性質?我們在它之中的位置如何,以及宇宙和我們從何而來?為何它是這個樣子的?我們採用某種「世界圖」』來試圖回答這些問題,如同無限的烏龜塔——一個支持平坦的地球是這樣的一種圖象一樣,超弦理論也是一種圖象。雖然後者比前者更數學化、更精確,但兩者都是宇宙的理論。兩個理論都缺乏觀察的證據:沒人看到一個背負地球的大龜,但也沒有人看到超弦。然而,龜理論作為一個好的科學理論是不夠格的,因為它預言了人會從世界的邊緣掉下去。除非發現它能為據說在百慕達三角消失的人提供解釋。這個預言和經驗不一致!

最早先在理論上描述和解釋宇宙的企圖牽涉到這樣的思想,事件或自然現象是由具備人類感情的靈魂所控制,它們的行為和人類非常相像,並且是不可預言的。這些靈魂棲息在自然對象之中,諸如河流和山嶽,包括諸如太陽和月亮這樣的天體之中。它們必須被祈禱並供奉,以保證土壤的肥沃和四季的變化。然而,一些規律性逐漸地被注意到:太陽總是東升西落,而不管是否用犧牲去對之進貢。更進一步,太陽、月亮和行星沿著以被預言得相當精確的軌道穿越天穹。太陽、月亮仍然還可以是神祗,只不過是服從嚴格定律的神。如果你不將耶和華停止太陽運行之類的神話當真,則這一切顯然是毫不例外的。

首先,只有在天文學和一些其他情形下,這些規則和定律是顯而易見的。然而隨著文明的發展, 特別是近300年期間,越來越多的規則和定律被發現。這些定律的成功,使得拉普拉斯在19世紀初主張科學的宿命論。他提議只要給定宇宙在某一時刻的結構,由給定的一組定律即能精確地決定它的演化。

拉普拉斯的宿命論在兩個方面是不完整的。它沒講定律應該如何選擇,也沒指定宇宙的初始結構。這些都留給了上帝。上帝會選擇讓宇宙如何開始並要服從什麼定律,但是一旦開始之後它將不再干涉。事實上,上帝是被限制於19世紀科學不能理解的領域裡。

我們現在知道,拉普拉斯的宿命論的希望,至少在按照他頭腦中的方式,是不能實現的。量子力學不確定性原理表明,某些諸如粒子的位置和速度的對偶的量,不能同時以完全的精確度去預言。

量子力學通過一族量子理論來處理這種情形,粒子沒有很好定義的位置和速度,而是由一個波來代表。它們給出了這波隨時間演化的定律,在這種意義上,這些量子理論從屬於宿命論。這樣,如果某一時刻這個波是已知的,便可以將任一時刻的波算出。只是當我們試圖按照粒子的位置和速度對波作解釋之時,不可預見性的紊亂的要素才出現。但這也許是我們的錯誤:也許不存在粒子的位置和速度,只有波。只不過是我們企圖將波硬套到我們預想的位置和速度的觀念之中而己。由此導致的不一致乃是表面上不可預見性的原因。

事實上,我們已經重新將科學的任務定義為發現能使我們在由不確定性原理設定的極限內預言事件的定律。然而,還存在如下問題:宇宙的定律和初始條件是如何及為何選取的?

在本書中,我特別將制約引力的定律突出出來,因為正是引力使宇宙的大尺度結構成形,即使它是四類力中最弱的一種。引力定律和直到相當近代還被堅持的宇宙隨時間不變的觀念不相協調:引力總是吸引的這一事實意味著,宇宙必須或者在膨脹或者在收縮。按照廣義相對論,宇宙在過去某一時刻必須有一無限密度的狀態,亦即大爆炸,這是時間的有效起始。類似地,如果整個宇宙坍縮,在將來必有另一個無限密度的狀態,即大擠壓,這是時間的終點。即使整個宇宙不坍縮,在任何坍縮形成黑洞的局部區域里都會有奇點。這些奇點正是任何落進黑洞的人的時間終點。在大爆炸或其他奇點,所有定律都失效,所以上帝仍然有完全的自由去選擇發生了什麼以及宇宙是如何開始的。

當我們將量子力學和廣義相對論相結合,似乎產生了以前從未有過的新的可能性:空間和時間一起可以形成一個有限的、四維的沒有奇點或邊界的空間,這正如地球的表面,但有更多的維數。看來這種思想能夠解釋觀察到的宇宙的許多特徵,諸如它的大尺度一致性,還有像星系、恆星甚至人類等等小尺度的對此均勻性的偏離。它甚至可以說明我們觀察到的時間的箭頭。但是如果宇宙是完全自足的、沒有奇點或邊界、並且由統一理論所完全描述,那麼就對上帝作為造物主的作用有深遠的含義。

有一次愛因斯坦問道:「在製造宇宙時上帝有多少選擇性?」如果無邊界假設是正確的,在選擇初始條件上它就根本沒有自由。當然,它仍有選擇宇宙所服從的定律的自由。然而,實在並沒有那麼多的選擇性;很可能只有一個或數目很少的完整的統一理論,它是自治的,並且允許複雜到像能研究宇宙定律和詢問上帝本性的人類那樣的結構的存在。

即使只存在一個可能的統一理論,那隻不過是一組規則或方程。是什麼賦予這些方程以生命去製造一個為它們所描述的宇宙?通常建立一個數學模型的科學方法不能回答,為何必須存在一個為此模型所描述的宇宙這樣的問題。為何宇宙陷入其存在性的錯綜複雜之中?是否統一理論是如此之咄咄逼人,以至於其自身之實現成為不可避免?或者它需要一個造物主?若是這樣,它還有其他的宇宙效應嗎?又是誰創造了造物主?

迄今,大部分科學家太忙於發展描述宇宙為何物的理論,以至於沒工夫去過問為什麼的問題。另一方面,以尋根究底為己任的哲學家不能跟得上科學理論的進步。在18世紀,哲學家將包括科學在內的整個人類知識當作他們的領域,並討論諸如宇宙有無開初的問題。然而,在19和20世紀,科學變得對哲學家,或除了少數專家以外的任何人而言,過於技術性和數學化了。哲學家如此地縮小他們的質疑的範圍,以至於連維特根斯坦——這位本世紀最著名的哲學家都說道:「哲學僅餘下的任務是語言分析。」這是從亞里士多德到康德以來哲學的偉大傳統的何等的墮落!

然而,如果我們確實發現了一套完整的理論,它應該在一般的原理上及時讓所有人(而不僅僅是少數科學家)所理解。那時,我們所有人,包括哲學家、科學家以及普普通通的人,都能參加為何我們和宇宙存在的問題的討論。如果我們對此找到了答案,則將是人類理智的最終極的勝利——因為那時我們知道了上帝的精神。

小辭典

絕對零度:所能達到的最低的溫度,在這溫度下物體不包含熱能。

加速度:物體速度改變的速率。

人擇原理:我們之所以看到宇宙是這個樣子,只是因為如果它不是這樣,我們就不會在這裡去觀察它。

反粒子:每個類型的物質粒子都有與其相對應的反粒子。當一個粒子和它的反粒子碰撞時,它們就湮滅,只留下能量。

原子:通常物質的基本單元,是由很小的核於(包括質子和中子)以及圍著它轉動的電子所構成。

大爆炸:宇宙開端的奇點。

大擠壓:宇宙終結的奇點。

黑洞:空間—時間的一個區域,因為那兒的引力是如此之強,以至於任何東西,甚至光都不能從該處逃逸出來。

強德拉塞卡極限:一個穩定的冷星的最大的可能的質量的臨界值,若比這質量更大的恆星,則會坍縮成一個黑洞。

能量守恆:關於能量(或它的等效質量)既不能產生也不能消滅的科學定律。

坐標:指定點在空間—時間中的位置的一組數。

宇宙常數:愛因斯坦所用的一個數學方法,該方法使空間—時間有一固有的膨脹傾向。

宇宙學:對整個宇宙的研究。

電荷:粒子的一個性質,由於這性質粒子排斥(或吸引)其他與之帶相同(或相反)符號電荷的粒子。

電磁力:帶電荷的粒子之間的相互作用力,它是四種基本力中第二強的力。

電子:帶有負電荷並繞著一個原子核轉動的粒子。

弱電統一能量: 大約為100吉電子伏的能量,在比這能量更大時,電磁力和弱力之間的差別消失。

基本粒子:被認為不可能再分的粒子。

事件:由它的時間和空間所指定的空間—時間中的一點。

事件視界:黑洞的邊界。

不相容原理:兩個相同的自旋為1/2的粒子(在測不準原理設定的極限之內)不能同時具有相同的位置和速度。

場:某種充滿空間和時間的東西,與它相反的是在一個時刻,只存在於空間—時間中的一點的粒子。

頻率:對一個波而言,在1秒鐘內完整循環的次數。

伽瑪射線:波長非常短的電磁波,是由放射性衰變或由基本粒子碰撞產生的。

廣義相對論:愛因斯坦的基於科學定律對所有的觀察者(而不管他們如何運動的)必須是相同的觀念的理論。它將引力按照四維空間—時間的曲率來解釋。

測地線:兩點之間最短(或最長)的道路。

大統一能量:人們相信,在比這能量更大時,電磁力、弱力和強力之間的差別消失。

大統一理論(GUT):一種統一電磁、強和弱力的理論。

虛時間:用虛數測量的時間。

光錐:空間—時間中的面,在上面標出光通過一給定事件的可能方向。

光秒(光年):光在1秒(1年)時間裡走過的距離。

磁場:引起磁力的場,和電場合併成電磁場。

質量:物體中物質的量;它的慣性,或對加速的抵抗。

微波背景輻射:起源於早期宇宙的灼熱的輻射,現在它受到如此大的紅移,以至於不以光而以微波(波長為幾厘米的無線電波)的形式呈現出來。

裸奇點:不被黑洞圍繞的空間—時間奇點。

中微子:只受弱力和引力作用的極輕的(可能是無質量的)基本物質粒子。

中子:一種不帶電的、和質子非常類似的粒子,在大多數原子核中大約一半的粒子是中子。

中子星:一種由中子之間的不相容原理排斥力所支持的冷的恆星。

無邊界條件:宇宙是有限的但無界的(在虛時間裡)思想。

核聚變:兩個核碰撞併合並成一個更重的核的過程。

核:原子的中心部份,只包括由強作用力將其束縛在一起的質子和中子。

粒子加速器:一種利用電磁鐵能將運動的帶電粒子加速,並給它們更多能量的機器。

相位:一個波在特定的時刻的在它循環中的位置——一種它是否在波峰、波谷或它們之間的某點的標度。

光子:光的一個量子。

普郎克量子原理:光(或任何其他經典的波)只能被發射或吸收其能量與它們頻率成比例的分立的量子的思想。

正電子:電子的反粒子(帶正電荷)。

太初黑洞:在極早期宇宙中產生的黑洞。

比例:「X比例於Y」表示當Y被乘以任何數時,X也如此;「X反比例於Y」,表示,當Y被乘以任何數時,X被同一個數除。

質子:構成大多數原子中的核中大約一半數量的、帶正電的粒子。

量子:波可被發射或吸收的不可分的單位。

量子力學:從普郎克量子原理和海森堡不確定性原理髮展而來的理論。

夸克:感受強作用力的帶電的基本粒子。每一個質子和中子都是由三個夸克組成。

雷達:利用脈衝無線電波的單獨脈衝到達目標並折回的時間間隔來測量對象位置的系統。

放射性:一種類型的原子核自動分裂成其他的核。

紅移:由於多普勒效應,從離開我們而去的恆星發出的光線的紅化。

奇點:空間—時間中空間—時間曲率變成無窮大的點。

奇點定理:這定理是說,在一定情形下奇點必須存在——特別是宇宙必須開始於一個奇點。

空間—時間:四維的空間,上面的點即為事件。

空間的維:空間—時間的類空的、也就是除了時間的維之外的三維的任一維。

狹義相對論:愛因斯坦的基於科學定律對所有進行自由運動的觀察者(不論他們的運動速度)必須相同的觀念。

譜:諸如電磁波對它的分量頻率的分解。

自旋:相關於但不等同於日常的自轉概念的基本粒子的內部性質。

穩態:不隨時間變化的態:一個以固定速率自轉的球是穩定的,因為即便它不是靜止的,在任何時刻它看起來都是等同的。

強力:四種基本力中最強的、作用距離最短的一種力。它在質子和中子中將夸克束縛在一起,並將質子和中子束縛在一起形成原子。

不確定性原理:人們永遠不能同時準確知道粒子的位置和速度;對其中一個知道得越精確,則對另一個就知道得越不準確。

虛粒子:在量子力學中,一種永遠不能直接檢測到的,但其存在確實具有可測量效應的粒子。

波/粒二象性:量子力學中的概念,是說在波動和粒子之間沒有區別;粒子有時可以像波動一樣行為,而波動有時可以像粒子一樣行為。

波長:對於一個波,在兩相鄰波谷或波峰之間的距離。

弱力:四種基本力中第二弱的、作用距離非常短的一種力。它作用於所有物質粒子,而不作用於攜帶力的粒子。

重量:引力場作用到物體上的力。它和質量成比例,但又不同於質量。

白矮星:一種由電子之間不相容原理排斥力所支持的穩定的冷的恆星。


推薦閱讀:
查看原文 >>
相关文章