哈密頓原理即: [delta S=	ext{0}]

哈密頓原理即保守的、完整的力學體系在相同時間內, 由某一初位形轉移到另一已知位形的一切可能運動中, 真實運動的主函數具有穩定值, 即對於真實運動來講, 主函數的變分等於零. 哈密頓原理與牛頓運動定律是等價的原理.

(這裡直接給出了,可以考慮改天試從E-L equation推導出來)

#其中作用量 [S] 被定義為 [S=int_{{{t}_{1}}}^{{{t}_{2}}}{Ldt}]

已知哈密頓量: [H=sumlimits_{alpha }{frac{partial L}{partial {{{dot{q}}}_{alpha }}}{{{dot{q}}}_{alpha }}}-L] 且記 [frac{partial L}{partial {{{dot{q}}}_{alpha }}}={{p}_{alpha }}]

(#注意上面這個式子成立的前提是在保守系下)

則哈密頓原理可寫為: [delta S=delta int_{{{t}_{1}}}^{{{t}_{2}}}{Ldt}=int_{{{t}_{1}}}^{{{t}_{2}}}{delta left[ sumlimits_{alpha }{{{p}_{alpha }}{{{dot{q}}}_{alpha }}}-H 
ight]dt=0}]

[Rightarrow int_{{{t}_{1}}}^{{{t}_{2}}}{left[ sumlimits_{alpha }{left( {{{dot{q}}}_{alpha }}delta {{p}_{alpha }}+{{p}_{alpha }}delta {{{dot{q}}}_{alpha }} 
ight)}-delta H 
ight]dt}=0]

[Rightarrow int_{{{t}_{1}}}^{{{t}_{2}}}{left[ sumlimits_{alpha }{left( {{{dot{q}}}_{alpha }}delta {{p}_{alpha }}-{{{dot{p}}}_{alpha }}delta {{q}_{alpha }} 
ight)}+sumlimits_{alpha }{frac{d}{dt}left( {{p}_{alpha }}delta {{q}_{alpha }} 
ight)}-delta H 
ight]dt}=0] [Rightarrow sumlimits_{alpha }{left. {{p}_{alpha }}delta {{q}_{alpha }} 
ight|_{{{t}_{1}}}^{{{t}_{2}}}}+int_{{{t}_{1}}}^{{{t}_{2}}}{left[ sumlimits_{alpha }{left( {{{dot{q}}}_{alpha }}delta {{p}_{alpha }}-{{{dot{p}}}_{alpha }}delta {{q}_{alpha }} 
ight)}-delta H 
ight]dt}=0]

其中 [sumlimits_{alpha }{left. {{p}_{alpha }}delta {{q}_{alpha }} 
ight|_{{{t}_{1}}}^{{{t}_{2}}}}=0] 是顯然的,因為系統在初末時刻的狀態是給定的,所以變分為0.

[Rightarrow int_{{{t}_{1}}}^{{{t}_{2}}}{left[ sumlimits_{alpha }{left( {{{dot{q}}}_{alpha }}delta {{p}_{alpha }}-{{{dot{p}}}_{alpha }}delta {{q}_{alpha }} 
ight)}-sumlimits_{alpha }{left( frac{partial H}{partial {{p}_{alpha }}}delta {{p}_{alpha }}+frac{partial H}{partial {{q}_{alpha }}}delta {{q}_{alpha }} 
ight)} 
ight]dt}=0]

[Rightarrow int_{{{t}_{1}}}^{{{t}_{2}}}{sumlimits_{alpha }{left[ left( {{{dot{q}}}_{alpha }}-frac{partial H}{partial {{p}_{alpha }}} 
ight)delta {{p}_{alpha }}-left( {{{dot{p}}}_{alpha }}+frac{partial H}{partial {{q}_{alpha }}} 
ight)delta {{q}_{alpha }} 
ight]}dt}=0]

其中 [delta {{p}_{alpha }}] [delta {{q}_{alpha }}] 都是獨立變數的變分,所以只能是有下面關係式成立:

[left{ egin{align}   & frac{partial H}{partial {{p}_{alpha }}}={{{dot{q}}}_{alpha }} \   & frac{partial H}{partial {{q}_{alpha }}}=-{{{dot{p}}}_{alpha }} \  end{align} 
ight.] #又見到了哈密頓正則方程

推薦閱讀:

相關文章