簡介

柯伊伯帶(Kuiper belt),又稱作倫納德·柯伊伯帶,是太陽系在海王星軌道(距離太陽約30天文單位)外黃道面附近、天體密集的中空圓盤狀區域。 柯伊伯帶的假說最初是由愛爾蘭裔天文學家艾吉沃斯提出,傑拉德·柯伊伯(GPK)完善了該觀點。

柯伊伯帶的假說最先由美國天文學家弗雷德裏克·倫納德提出,十幾年後傑拉德·柯伊伯證實了該觀點。柯伊伯帶類似小行星帶,但範圍大得多,它比小行星帶寬20倍且重20至200倍。如同主小行星帶,它主要包含小天體或太陽系形成的遺跡。雖然大多數小行星主要是岩石和金屬構成的,但大部分柯伊伯帶天體在很大程度上由冷凍的揮發成分(稱為「冰」),如甲烷、氨和水組成。柯伊伯帶至少有三顆矮行星:冥王星,妊神星和鳥神星。一些太陽系中的衛星,如海王星的海衛一和土星的土衛九,也被認為起源於該區域。

2006年8月,國際天文學聯合會將冥王星剔出行星類別,並和穀神星與新發現的鬩神星一起歸入新類型的矮行星。

在柯伊伯帶已知天體,數據源自小行星中心。 在主帶天體顏色為綠色,而分散的天體為橙色。四個外側行星是藍色的。

歷史

1930年發現冥王星之後,很多人都猜測它可能不是該區域內唯一的一顆星體。幾十年來,對柯伊伯帶的存在與否、存在形式一直有各種不同的猜測,但直到1992年才發現其存在的第一個直接證據。對柯伊伯帶的本質和數量的各種不同猜想以及不連續性,導致難以確定誰纔是最早提出且值得讚許的原創者。

天文學家傑吉拉德·柯伊伯,柯伊伯帶就是以他的名字命名的。

假設

最早提出海王星之外還有天體羣存在的天文學家是弗雷德裏克·查爾斯·倫納德。在克萊德·湯博於1930年發現冥王星後不久,倫納德就思索:「冥王星不太可能是海王星外唯一的天體,是否還有一連串的海王星外天體等待被發現,冥王星只是第一顆,其它的成員註定最終還是會被檢測到」。就在同一年,天文學家亞敏奧託劉屈那提出冥王星「可能是有待發現的許多長週期行星之一」。

在1943年,肯尼斯·沃斯在英國天文協會期刊上投書假設,在海王星之外的區域,原始太陽星雲內的物質在空間內散佈得太廣泛,因此只能凝聚成較小的天體而難以凝聚成行星。由此,他得出結論:相對較小但大量的天體佔據太陽系的行星之外廣大的空間,並且,年復一年,它們中的某一個偶然會從它們的球殼遊盪到內太陽系,成為拜訪太陽系內部的彗星之一。

在1951年,傑拉德·柯伊伯於發表在天文物理學期刊上的一篇文章中推測,太陽系在演化的早期,會形成一個類似的圓盤,而且他認為這個狹長的圓盤迄今依然存在。柯伊伯操作它的假說,在他的時代,冥王星被認為和地球一樣大小,因此能夠將那些小天體拋射至奧爾特雲或太陽系之外。柯伊伯的假說是正確的,否則現在就不會有柯伊伯帶這個名稱。

這個假設在其後十年有各種不同的形式。在1962年,物理學家艾利絲泰爾·卡麥倫假設在太陽系的邊緣有大量的小天體存在。在1964年,弗雷德·惠普爾提出著名且通俗化的彗星臟雪球假說,並假設有一個足夠大的彗星帶,也許質量大到被認為可以影響天王星的軌道,造成差異而引發對X行星的搜尋。然而,觀察結果推翻了這個假說。

在1977年,查爾斯·科瓦爾發現軌道介於土星和天王星之間的冰小行星(2060) 查倫。他使用的是與克萊德·湯博在50年前發現冥王星相同,稱為閃爍比對器的設備。在 1992年,另一顆小行星(5145) Pholus被發現有著相似的軌道。現在,在木星和海王星之間存在著許多類似彗星的天體,被稱為半人馬族小行星。半人馬小行星的軌道並不穩定,只有數百萬年的動力學生存時間。在1977年發現小行星(2060)查倫之後,天文學家就推測有外來的儲藏所,經常補充半人馬小行星。

稍後,從對彗星進一步的研究,發現柯伊伯帶存在的證據。已經知道一些彗星的壽命是有限的,因為當它們靠近太陽時,太陽的熱會導致揮發性的表面逐漸升華至太空,使它們日漸消蝕。為了在太陽系的有生之年都有彗星的存在,它們就必須經常得到補充。這種補充的區域之一就是奧爾特雲,最早是荷蘭天文學家歐特在1950年假設的,是超出50,000天文單位之外的一個巨大球殼。奧爾特雲被認為是像海爾·波普彗星這種軌道長達數千年的長週期彗星的起源地。

然而,還有另一種週期短於200年的彗星族羣,像是哈雷彗星,稱為短週期彗星或週期彗星。在20世紀的70年代,發現的短週期彗星越來越多,而它們的性質並不符合起源自奧爾特雲的說法。來自奧爾特雲的天體要成為短週期彗星,它首先要被巨大的行星俘獲。在1980年,烏拉圭大學的天文學家茱麗歐安潔費南德茲首先在皇家天文學會月刊指出,來自奧爾特雲被送入內太陽系的600顆彗星,幾乎是每一顆短週期彗星,都會被彈入星際空間。他考慮觀測到的彗星數量,推測在35至50天文單位之處應該有一個彗星帶。接續費南德茲的工作,加拿大研究團隊的馬丁·鄧肯、湯姆·奎因和史考特·特里梅在1988年大量使用電腦模擬,以確定所有觀測到的彗星是否都來自奧爾特雲。他們發現奧爾特雲不能解釋所有的短週期彗星,特別是聚集在黃道平面附近的短週期彗星,而來自奧爾特雲的彗星傾向於來自天空中的任意一點。添加入如同費南德茲所描述的一個帶,就可以與觀測匹配。據說,因為「彗星帶」和「柯伊伯帶」這兩個單詞出現在費南德茲論文開頭的第一段裏,所以特里梅將這個假設的地區命名為柯伊伯帶。

發現

在冒納凱阿火山頂部的望遠鏡陣列, 在這裡「柯伊伯帶」被發現。

1987年,當時在麻省理工學院工作的天文學家大衛·朱維特,對於「太陽系外圍的明顯空虛」越來越疑惑。他鼓勵當時的研究生劉麗杏幫助他找到超越冥王星軌道的另一個天體,因為,他對她說,「如果我們不這樣做,沒有人會。」使用在亞利桑那州基特峯國家天文臺和在智利托洛洛山美洲際天文臺的望遠鏡,朱維特和劉麗杏以與克萊德·湯博和查爾斯·科瓦爾幾乎相同的方式進行自己的搜索,與進行比較。

最後,經過五年的搜索,於1992年8月30日,朱維特和劉麗杏宣佈「發現候選的柯伊伯帶天體」:小行星15760。半年後,他們在該區域又發現了第二個天體,(181708) 1993 FW。

起源

柯伊伯帶的複雜結構和精確的起源仍是不清楚的,因此天文學家在等待泛星計劃(Pan-STARRS)望遠鏡巡天的結果,應該會揭露更多目前不知道的柯伊伯帶天體,並在測量後對它們有更多的瞭解。

柯伊伯帶被認為包含許多微行星,它們是來自環繞著太陽的原行星盤碎片,它們因為未能成功的結合成行星,因而形成較小的天體,最大的直徑都小於3,000公里。

近代的計算機模擬顯示柯伊伯帶受到木星和海王星極大的影響,同時也認為即使是天王星或海王星都不是在土星之外的原處形成的,因為只有少許的物質存在於這些地區,因此如此大的天體不太可能在該處形成。換言之,這些行星應該是在離木星較近的地區形成的,但在太陽系早期演化的期間被拋到了外面。1984年,胡利奧·安赫爾·費南德茲和葉永烜的研究認為與被拋射天體的角動量交換可以造成行星的遷徙。終於,軌道的遷徙到達木星和土星形成2:1共振的確切位置:當木星繞太陽運轉兩圈,土星正好繞太陽一圈。引力如此的共振所產生的拉力,最終還是打亂了天王星和海王星的軌道,造成它們的位置交換而使海王星向外移動到原始的柯伊伯帶,造成了暫時性的混亂。當海王星向外遷徙時,它激發和散射了許多外海王星天體進入更高傾角和更大離心率的軌道。

然而,目前的模型仍然不能說明許多分佈上的特徵,引述其中一篇科學論文的敘述:這問題「繼續挑戰分析技術和最快速的數值分析軟體和硬體」。

外行星和柯伊伯帶的摹擬:(a)木星和土星2:1共振之前,(b)在海王星軌道遷徙之後,柯伊伯帶天體被散射至太陽系內(c)柯伊伯帶天體被木星排斥之後。

組織

以最完整的範圍,包括遠離中心最外側的區域,柯伊伯帶大約從30天文單位伸展到55天文單位。然而,一般認為主要的部分(參考下文)只是從39.5天文單位的2:3共振區域延展到48天文單位的1:2共振區域。柯伊伯帶非常的薄,主要集中在黃道平面上下10度的範圍內,但還是有許多天體散佈在更寬廣數倍的空間內。總之,它不像帶狀而更像花托或甜甜圈(多福餅)。而且,這意味著柯伊伯帶對黃道平面有1.86度的傾斜。

由於存在著軌道共振,海王星對柯伊伯帶的結構產生了重大的作用。在與太陽系年齡比較的時標上,海王星的引力使在某些軌道上的天體不穩定,不是將她們送入內太陽系內,就是逐入離散盤或星際空間內。這在柯伊伯帶內製造出一些與小行星帶內的柯克伍德空隙相似的空白區域。例如,在40至42天文單位的距離上,沒有天體能穩定的存在於這個區間內。無論何時,在這個區間內被觀測到的天體,都是最近才進入並且會被移出到其他的空間。

特性

柯伊伯帶天體分為兩類:經典的和散佈性的。大多數柯伊伯帶天體都屬於經典的,其外部邊界大約在距太陽50天文單位處。經典柯伊伯帶天體沒有受到其它星體的碰撞與擾動,完全是太陽系冷卻氣雲盤自發冷凝的結果,所以其運行軌道偏心率較小而近圓形。另外它們的軌道傾斜度非常大,最大可以傾斜30度以上。傾斜17度的冥王星,實際上經常被看作經典柯伊伯帶天體。現在主要有兩個假說來解釋它們傾斜的原因:一是所謂內部動搖假說,推測在太陽系早期,有一定數量的大塊頭小行星被海王星彈射進柯伊伯帶,從而使經典柯伊伯帶天體軌道發生傾斜;二是所謂外部動搖假說,推測在柯伊伯帶外有一個「路過的」恆星產生了引力擾動,使經典柯伊伯帶天體軌道發生了傾斜,這個假說很好地解釋了為什麼經典柯伊伯帶天體的運行範圍如刀切一般地整齊。

傳統的柯伊伯帶

大約在~42至~48天文單位,雖然海王星的引力影響已經是微不足道的,而且天體可以幾乎不受影響的存在著,這個區域就是所謂的傳統柯伊伯帶,並且目前觀測到的柯伊伯帶天體有三分之二在這兒。因為近代第一個被發現的柯伊伯帶天體是1992 QB1,因此它被當成這類天體的原型,在柯伊伯帶天體的分類上稱為QB1天體。

傳統的柯伊伯帶向來是兩種不同族羣的綜合體,第一類是"dynamically cold"的族羣,比較像行星:軌道接近圓形,軌道離心率小於0.1,相對於黃道的傾角低於10度(它們的軌道平面貼近黃道面,沒有太大的傾斜)。第二類是"dynamically hot"的族羣,軌道有較大的傾斜(可以達到30度)。這兩類會有這樣的名稱主要並不是因為溫度上的差異,而是以微小的氣體做比喻,當它們變熱時,會增加它們的相對速度。這兩種族羣不僅是軌道不同,組成也不同,冷的族羣在顏色比熱的紅,暗示它們在不同的環境形成。熱的族羣相信是在靠近木星的地區形成,然後被氣體巨星拋出。而另一方面,冷的族羣雖然也可能是海王星在向外遷徙時清掃出來的,但無論是較近或較遠,相信是在比較靠近現在所在的位置形成的。

共振

當一個天體的軌道週期與海王星有明確的比率時(這種情況稱為平均運動共振),如它們的相對基線是適當的,它們可能被鎖定在與海王星同步的運動,以避免受到攝動而使軌道變得不穩定。如果天體在這種正確的軌道上,在實例上,如海王星每繞太陽三週它便會繞行二週,則每當它回到原來的位置時,海王星總比它多運行了半條軌道的距離,因為這時海王星在軌道上繞行了1.5圈。這就是所謂的2:3(3:2)的軌道共振,這種軌道特徵的半長軸大約是39.4天文單位,而已知的2:3共振天體,包括冥王星和他的衛星在內,已經超過200個,而這個家族的成員統統歸類為冥族小天體。許多冥族小天體,包括冥王星,都會穿越過海王星的軌道,但因為共振的緣故,永遠不會與海王星碰撞。 其有一些,像是歐侉爾和伊克西翁的大小,都已經大到可以列入類冥天體的等級。冥族小天體有高的軌道離心率,因此它們當初原本應該不是在現在的位置上,而是因為海王星的軌道遷徙被轉換到這兒的。1:2共振(每當海王星轉一圈,它才完成半圈)的軌道半長軸相當於47.7天文單位,但數量稀稀落落的,這個族羣有時會被稱為twotino。較小的共振族羣還有3:4、3:5、4:7和2:5.。海王星也有特洛伊小行星,它們位於軌道前方和後方的L4和L5的重力穩定點上。海王星特洛伊有時被稱為與海王星1:1共振。海王星特洛伊在它們的軌道上是穩定的,但與被海王星捕獲有所不同,它們被認為是沿著軌道上形成的。

另外,還沒有明確的理由可以解釋在半長軸小於39天文單位的距離內缺乏共振的天體。當前被接受的假說是在海王星遷徙時被驅離了,因為這個區域在遷移中是軌道不穩定的地區,因此在這兒的任何天體不是被掃清,就是被重力拋出去。

柯伊伯斷崖

1:2共振之外已知的數量非常少,看起來是個邊界,但還不能確定這是傳統柯伊伯帶外側的邊界,還是隻是一個寬闊的空隙。觀測到2:5共振的距離大約在55天文單位,被認為在傳統柯伊伯帶之外;然而,預測上在傳統柯伊伯帶與共振帶之間的大量天體尚未被觀測到。

早期的柯伊伯帶模型認為在50天文單位之外的大天體數量應該增加二個數量級,因此,這突然的數目下降,被稱為"柯伊伯斷崖",是完全未被預料到的,並且它的原因至今仍不清楚。伯恩斯坦和屈林(Trilling)等人發現直徑在100公里或更大的天體在50天文單位的距離上確實突然減少的證據,並不是觀測上造成的偏差。可能的解釋是在那個距離上的物質太缺乏或太分散,因此不能成長為較大的天體;或者是後續的過程摧毀了已經形成的天體。日本神戶大學的向井正和帕特里克·萊卡維卡(Patryk Lykawka)則主張一個大小有如地球而尚未曾被看見的行星與此有關,並且可能在未來的10年內發現這個天體。

探測

2006年1月19日,第一艘以探索柯伊伯帶為任務的航天器新視野號發射升空。該任務是由美國西南研究院首席研究員艾倫·斯特恩所領導的一個團隊提出。新視野號航天器已於2015年7月14日抵達了冥王星,如果條件允許,它將繼續對另外尚未確定的柯伊伯帶天體繼續研究。任何選擇的柯伊伯帶天體將是40和90公里(25至55英里)的直徑,在理想情況下是白色或灰色,與冥王星的偏紅顏色有對比。

2014年10月15日,NASA宣佈發現一些柯伊伯帶天體,可能會成為新視野號的研究目標。

美國東部標準時2019年1月1日,新視野號在距離太陽43.4天文單位處飛掠名為「天涯海角」的柯伊伯帶小行星2014 MU69。

其他柯伊伯帶

到2006年,天文學家們已經解決了被認為是圍繞除了太陽之外的九個星的柯伊伯帶狀結構塵埃盤。

參考資料

  1. 中國數字科技館,宇宙視窗>>太陽家族>>太陽系邊緣>>柯伊伯帶,柯伊伯帶
  2. 搜狐,太陽系邊疆傳奇——柯伊伯帶與奧爾特雲,太陽系邊疆傳奇——柯伊伯帶與奧爾特雲,2017-08-24
  3. 柯伊伯帶:謎一樣的天體區域,中國航天報,張雪松,2015-07-11
  4. 柯伊伯帶和太陽系的彗星盤,作 者:謝懿; 文獻出處:世界科學 2005年06期
  5. 柯伊伯帶結構形成動力學,天文學進展,黎健,周禮勇,孫義燧,2009年02期

推薦閱讀:

相關文章