凸形路堤擋土牆和衡重式路肩擋土牆,都是大型的。


應選擇透水性強的填料。當採用粘土作填料時,宜摻入適量的碎石。在季節性凍土地區,應選擇爐渣、碎石、粗砂等非凍脹性填料。在填土表面宜鋪設防水層,一般可用黏土夯實,厚300mm。壓實度一般在90-93%之間。

擋土牆應設置排水孔。排水孔應沿著橫豎兩個方向設置,其間距宜取2-3m,排水孔外斜坡度宜為5%,最下一排的泄水孔應高出地面。孔眼尺寸不宜小於100mm。常用的孔眼尺寸有:50x100、100x100、150x200或100的圓孔。泄水孔附近應用粗顆粒材料覆蓋,並做成反濾層以免淤塞。為了防止牆後積水滲入基礎,應在最低泄水孔下部鋪設粘土層並夯實。支擋結構後面應做好濾水層,必要時應作排水溝


1 印度水資源及跨流域調水工程概況 印度是世界上第七大國,國土面積297.47萬km2,人口近10億,由22個邦和9個直轄區組成,可耕地面積佔總面積的55%,農業產值佔國民總收入的50%。全國年平均降水量1100mm,總降水量37萬m3,蒸發量約佔降水量的1/3,地表水年徑流量約17萬m3,7.9萬m3入滲補充地下水,其中約2.7萬m3可以被利用。印度的降水量分佈不均勻,喜馬拉雅山東部和西海岸的山脈年降水量為最大可達4000mm,東部阿薩姆地區為1000mm,在中部和南部的高止山脈背風坡面不到600mm,最乾旱的西北部拉賈斯坦和塔爾沙漠以及孟買北部固賈拉特年降水量不足100mm。印度的河流水源有兩種:一種是雪水補給的,在北部和西部經常引起洪水;另一種是季風雨補給(印度降雨量的90%集中在6~9月的雨季),在中南部造成短暫的洪水,這些河道旱季乾涸,雨季暴漲,很有規律。印度現有灌溉面積2200萬hm2,佔可耕地面積的15%,僅佔預計潛在灌溉能力的一半。據粗略估計,印度的1/3地區水量有餘。1/3地區缺水,1/3地區水量時多時少。因此,開發印度水利資源最好和最可靠的辦法就是把季風雨徑流貯存在水庫中,並用於作物需水期灌溉。由於水庫庫容與年徑流相比根本談不上實現有效控制和最佳利用,所以跨流域長距離調水就成為開發印度水利資源恰當而重要的方式。長距離大流量調水在印度已有五個世紀的歷史,如西珠木那運河和阿格拉運河從喜馬拉雅山調水至遙遠的旁遮普、烏塔普拉德西和拉賈斯坦。20世紀開始,特別是印度獨立以來調水工程快速發展,取得了巨大的經濟效益。如北方邦的薩爾達-薩哈亞克調水工程從卡克拉河-薩爾達河送水到恆西平原,供水渠長260km,設計流量650m3/s,灌溉面積約160萬hm2,拉牟剛嘎河供水工程,灌溉面積約60萬hm2;巴克拉-前加爾調水工程,灌溉面積約133.33萬hm2;那珠那沙供水工程,灌溉面積約80萬hm2;唐巴德拉供水工程,灌溉面積約40萬hm2以及正在建設中的拉賈斯坦運河工程,從喜馬拉雅山輸水到拉賈斯坦的沙漠地帶,供水渠長178km,設計流量685m3/s,灌溉面積約120萬hm2。20世紀90年代印度國家水文研究院提出的2000年及2025年全國需水量預測見表1。表1 印度2000年、2025年需水量預測表由此表可見,印度全國年需水量將由1990年的5520億m3增加到2025年的10500億m3,增加190%;其中灌溉用水由4600億m3增加到7700億m3,增加167%。其增長速度是十分驚人的。儘管近幾十年對灌溉水源做了大規模的開發,但印度政府和各邦政府對長距離大流量調水問題仍在進行認真的規劃和調查研究。這些調水規劃有:哥達瓦利河-克里西那河-蒲那河調水計劃;那馬德河高水運河;西流河水東調計劃;恆河建高壩蓄水計劃;布拉馬普特拉河-恆河調水計劃以及開發拉賈斯坦沙漠計劃等。印度政府已經認識到大規模調水對於開發水利資源和改善環境的重要性,可以期望,再過一、二十年這些規劃中大部分將變成現實,那時印度大部分地區的社會經濟、人民生活和生態環境將會面貌一新。2 薩爾達-薩哈亞克調水工程設計、運行和管理薩爾達-薩哈亞克調水工程建於20世紀70年代中後期,已經正常運用20餘年。調水工程位於印度北方邦,從發源於尼泊爾境內喜馬拉雅山南麓的卡克拉河和薩爾達河取水,水源充沛。在兩條河上各建一座低攔河壩和進水閘組成的引水樞紐。在兩河之間建一條連接渠,長14.5km,設計流量為480m3/s,從卡克拉河調水入薩爾達河,以上為取水首部工程。輸水總乾渠自薩爾達河引水,全長260km(其中自26km至104km為雙線並行輸水,其餘均為單線輸水),設計引水量650m3/s,灌溉面積160hm2。灌區內主要作物為甘蔗、水稻、小麥、蔬菜和果樹,主要灌溉期為6月至11月;11月至3月用水較少,一般維持在400m3/s左右;3月至6月為非灌溉期。總乾渠基本處於平原地區,地形平坦,村鎮稀疏,渠線比較順直,渠道多為填方或半挖半填,設計水深7.0m~6.8m,渠道底寬48m~23m,設計邊坡為1/2.0,縱坡為1/10000。總乾渠渠道輸水部分採用混合襯砌,襯砌結構自下而上為素混凝土墊層(厚10cm)-磚(厚12cm)-塑膜防滲層-磚(厚12cm),襯砌段長度合計130km。總乾渠共設節制閘4座,分水閘12座。為保證輸水安全,每隔40km~60km設退水閘一座,退水流量為相應總乾渠設計流量的1/2,總乾渠與現有河渠交叉處共設大型建築物2座,其中渠渡槽1座、河涵洞1座。由於總乾渠兩側村莊較稀疏,公路橋間距約為2km~4km左右。調水工程仍實行政府行政管理的事業體制。總管理機構為北方邦灌溉管理局,並在樞紐工程和重要建築物處設管理處。灌區的農作物灌溉定額為1m水深(摺合10005m3/hm2)。灌溉水費按作物類型以hm2計徵,如:小麥為287盧比/hm2;甘蔗為474盧比/hm2。水費由地方政府徵收,工程管理、運用和維修費用由政府撥付。工程運用方式也比較簡單,渠道一般不按灌溉需水量輸水,而是常年維持大流量輸水,多餘的水量送入下遊河道。3 戈麥蒂渡槽的設計、施工和管理戈麥蒂渡槽是目前世界上已建成的最大渡槽之一,位於薩爾達-薩哈亞克調水工程總乾渠163km處,是總乾渠跨越戈麥蒂河的大型交叉工程。總乾渠設計流量357m3/s,戈麥蒂河設計洪水流量4530m3/s,渡槽總長473.6m,其中:進口漸變段37m,槽身段381.6m,出口漸變段55m。過水槽寬12.8m,高7.45m,由9.9m高的預應力混凝土縱梁、加勁肋和橫樑、上連桿組成的框架系統支承。左右縱梁頂部均設有5m寬的公路橋連接戈麥蒂河兩岸交通。渡槽下部結構空心槽墩和基礎沉井,槽墩長18m,寬3m,高9m;沉井長27m,寬12m,深35m。戈麥蒂渡槽的工程設計、施工特徵主要有以下幾點。3.1 增加盲跨,減少岸墩沉井深度戈麥蒂河設計洪水流量4530m3/s,經河道水利計算渡槽設10跨,每跨31.8m,即可滿足行洪要求。但按此進行沖刷計算,河槽部位沉井埋置深度為35m,兩岸沉井埋置深度達58m,不僅造價太高,施工難度也太大。因此,設計時在兩岸各增加1跨31.8m的盲跨,兩岸況井按埋置式設計,不再考慮沖刷影響。渡槽設計總長為12跨,每跨31.8m,共計381.6m。3.2 輸水槽與承重框架各自獨立,解決槽身抗裂問題戈麥蒂渡槽上部結構採用預應力承重框架支承非預應力輸水槽身的佈置形式。這種結構受力明確,跨度31.8m的承重框架不直接擋水,不必進行抗裂計算;而輸水槽身三面支承在間距為1.95m的橫樑和肋板上屬於密肋板結構,容易滿足抗裂安全要求。由於採用這種結構,輸水槽身可以分節佈置,設計為每跨三節,每節10.6m,以增強槽身對沉陷、位移、溫度、地震等變化的適應性。3.3 承重結構採用預應力箱型框架,承載能力強戈麥蒂渡槽承重結構採用預應力箱型框架,框架由縱梁、橫樑、豎肋和拉桿組成,為增強框架的剛度,底部縱梁和橫樑之間還設置了十字交叉的系梁。框架的每一個部件均為預應力混凝土結構,每根縱梁設有38根縱向預應力鋼絞線,每根橫樑設有12根橫向預應力鋼絞線,每根豎肋設有3根豎向預應力鋼絞線,每根拉桿設有4根橫向預應力鋼絞線。這個由三向預應力構成的高9.9m,寬14.6m,跨度31.8m的箱型框架具有很高的承載能力,經20餘年的高水位運用,未出現任何問題。3.4 採用兩段鋼槽連接段,選用合理的支座及分縫止水結構,適應地震、溫度、伸縮、沉降變形為了消除槽墩沉陷和地震時縱向位移對結構和止水的影響,戈麥蒂渡槽採用了非常規的連接段、支座、接縫和密封止水形式。經計算和現場實驗槽墩沉陷7.2cm~13.4cm,對應的漸變段側牆頂端位移可達30cm。為此,在岸墩與漸變段之間設置了一跨長1.2m的簡支滑動鋼槽,鋼槽支承在一側固定,一側可以滑動的圓柱鉸支座和滾動圓柱鉸支座上,能在滾動鉸支座側承受30cm的滑動位移。為便於滑動並保證密封止水,在支座的墊板上增加一疊10mm厚的鉛片,並將帶皺摺的止水銅片焊接在鋼槽和支座鋼板上,使之能適應水槽的位移,保證渡槽不漏水。在漸變段內,將水槽分段與沉井佈置相適應,即每段水槽放置於一個沉井上,並在沉井之間設置較小的水槽段。水槽支座採用特製的切線橡膠支座,相臨水槽間設30cm的分縫並採用Ⅴ型橡膠止水。這種止水錶面用鋼板覆蓋,鋼板一邊固定在一節水槽上,另一邊搭接在另一節水槽上,鋼板下鋪設鋁片並安裝P型密封橡膠止水,防止泥沙進入。漸變段是渡槽沉陷、位移最嚴重的部位,採取以上措施保證了渡槽的安全運行。3.5 漸變段採用沉井基礎,減少與主槽段之間的不均勻沉降戈麥蒂渡槽上部荷載很大,主槽部位全部採用沉井基礎。沉井為雙D型斷面,長27m,寬12m,井壁厚2.25m,隔牆厚1.5m。漸變段位於兩岸槽身坐落在原狀土上,如不進行處理將在主槽和漸變段之間產生很大的不均勻沉陷,造成結構破壞和渡槽漏水。為此,設計時特別重視兩岸漸變段的基礎處理,對漸變段的槽身也採用沉井基礎。漸變段的基礎沉井長26m,寬14m,比主槽沉井尺寸大,上游漸變段設3個沉井,下游漸變段設4個沉井,除與岸墩相臨的兩個為雙D型斷面外,其餘5個均為矩形斷面,矩形沉井壁厚為1.7m。為使設計更加符合實際,在戈麥蒂河左岸做了一個直徑5m,壁厚1.25m的實驗井,經詳細觀測得到:井壁摩阻力為1.9t/㎡;井底容許承載力為4.5kg/cm2以及荷載強度5kg/cm2時的總平均沉陷量。這些實測資料為沉井設計提供了可靠的依據。3.6 梁繫結構採用工字型斷面,受力條件好戈麥蒂渡槽的主要受力構件均採用工字型斷面。縱梁梁高9.9m;上翼緣寬5m;跨中部位腹板厚350mm,下翼緣寬600mm,高1.5m;兩端各5.55m長部位腹板厚600mm,下翼緣寬1650mm,高1.5m;跨中部位與兩端部位之間設600mm長的過渡段。橫樑高1.5m;腹板厚350mm;翼緣寬均為1m,上翼緣厚150mm,帶有高90mm的45°的梁腋;下翼緣邊厚150mm,帶有高150mm的30°的梁腋。拉桿也為工字型斷面,截面高600mm,腹板厚350mm,上下翼緣均為450mm,厚150mm。主要受力構件採用工字型斷面雖然給施工帶來一定困難,單具有斷面經濟合理,便於配筋等優點,特別適用於預應力混凝土結構。3.7 戈麥蒂渡槽工程量戈麥蒂渡槽於1973年10月開工,1978年竣工,總工期5年。主要工程量為:土石方35000m3,沉井土方開挖180000m3,混凝土和普通鋼筋混凝土140000m3,預應力混凝土8000m3,鋼筋7500t,鋼模板和鋼支架3500t。沉井開挖採用10t起重機加1.5m3抓鬥,每口井使用兩臺。由於沉井自重很大,一般不需另加壓重便能自行下沉,但是工地也準備了混凝土壓重塊,施工中有一個沉井就在使用加重塊後一個月未沉陷,而在一次偶然情況下突然下沉10m,所幸未造成任何破壞。上部結構施工順序為:縱梁,每根縱梁分3次澆築;橫樑;內外肋板;拉桿;輸水槽以及其他小項工程,如護欄、耐磨層、連接裝置等。縱梁施工由於河牀土壤承載力很低,不能在地面安裝腳手架和模板,為此製造了一臺帶滾輪的特種鋼拱架樑,架設在槽墩上,一次可施工4跨。縱梁採用定型鋼模板,分三層澆築混凝土,一旦縱梁澆注完成並施加完第1期預應力後,鋼拱架樑就移可至後面4跨,澆注後面4跨縱梁。橫樑、肋板、拉桿、輸水槽的模板均支承在從縱樑上緣懸掛下來的腳手行架上。由於輸水槽的側牆非常薄,側牆混凝土分4層澆築,並採用模板振搗器振搗壓實。為防止漏水,輸水槽底板和側牆均塗刷了兩層環氧樹脂。預應力的施加程序為縱梁(先垂直後縱向);橫樑;拉桿。縱梁澆築完5天後開始施加垂直預應力,從縱梁中部向兩端對稱施加,在縱梁頂部載入,在底部灌漿封孔。縱向預應力分兩期施加。第1期在混凝土澆築完7天後開始對26根鋼絞線施加預應力,梁底6根鋼絞線的預應力足以承受縱梁自重,此時可拆除底部鋼模板;第Ⅱ期預應力於縱梁混凝土澆築完21天後施加,各縱向鋼絞線均從縱梁兩端施加預應力。縱梁預應力由縱梁向跨中對稱施加,為減少附加應力對縱梁的影響,分三步進行:第1步,先對每根橫樑的2根鋼絞線施加預應力;第2步,對另外2根鋼絞線施加預應力;第3步,用千斤頂將整跨框架頂升並將縱梁支承在只允許橫向位移的滾住軸承上,再給橫樑中的其他鋼絞線施加預應力。所有橫樑預應力均由一端施加,施工時左右交叉對稱進行。拉桿施加預應力從縱梁兩端1/4跨處開始,向跨中和兩端對稱進行。每根拉桿的預應力一次施加完成。所有的預應力鋼絞線穿孔均採用混凝土泵進行灌漿,以確保漿體注滿整個空間。該渡槽的其他部位施工均採用常規的方法。戈麥蒂渡槽設有管理處負責運用管理和養護維修等工作。運行20多年來渡槽經常在高水位下運行,未出任何事故。通過檢測未發現工程有明顯的位移和沉降,也未發現渡槽常見的漏水現象。這些充分說明戈麥蒂渡槽的設計、施工和管理水平都是很高的。" %?Kr??


可是了我雖然是個高中的理科生


感謝提問,但是真的不知道,不瞭解


抱歉啦然後我是學工程的可惜是個小白


推薦閱讀:
相關文章