alpha .General Proposition:

1.0.

Sup FR_h

If forall p(x),q(x)in F[x],s.t.p(x)	imes q(x)=0

Then p(x)=0 vee q(x)=0,

F[x]=R_e

Demonstration:

1.1.

If Isubset F(x)m(x)in Icof[m(x),1]=1

deg[m(x)]=min{degF[x]}

Then card[m(x)]=1.

1.2.

Sup n(x)in Icof[n(x),1]=1

deg[n(x)]=deg[m(x)]

Then exists b(x)=m(x)-n(x)in I .

If b(x)	imes c^{-1}_{deg{b(x)}}=b_1(x),cof[n(x),1]=1,b_1(x)in I

Due to deg b_1(x)=deg b(x)<deg m(x)

Then b_1(x)=0,b(x)=0,m(x)=n(x)

m(x) 生成 I.

1.3. <m(x)>subset I

Due to Isubset Rm(x)in I

Then <m(x)>subset I

1.4. Isubset<m(x)>

If p(x)in I,

Then p(x)/m(x),s.t. p(x)=q(x)m(x)+r(x),

r(x)=0 vee 0leq deg{r(x)}<deg{m(x)},

Due to Isubset Rm(x)in I,

Thenr(x)=p(x)-q(x)m(x)in I,

If r(x)	imes c^{-1}_{deg{r(X)}}=r_1(x),r_1(x)in I,

Then 0leq deg r_1(x)=deg r(x)<deg m(x),

Due to deg[m(x)]=min deg F[x],

Then r_1(x)=0,r(x)=0,p(x)=q(x)	imes m(x)in<m(x)>,

Isubset<m(x)>

To sum up,

I=<m(x)>

2.0.

If p_1,p_2,,,p_nin F[x]

Then <P>=<gcd{p_1,p_2,,,p_n}>

Demonstration:

2.1.

Sup I=<P>

Due to 1.

exists m(x)subset I,cof[m(x),1]=1,

deg[m(x)]=min degF[x], card m(x)=1,

s.t.I=<m(x)>,

Due to p_i(x)in<m(x)>,

Then exists a_i(x)in F[x],i=1,,,n.

s.t.p_i(x)=a_i(x)	imes m_i(x),i=1,,,n.

m(x)|p_i(x),i=1,,,n.

2.2.

If q(x)|p_i(x),i=1,,,n.

Then p_i(x)in <q(x)>,i=1,,,n.

Due to <P>

Then <m(x)>=<P>subset <q(x)>,

m(x)in<q(x)>,q(x)|m(x),

m(x)=gcd{p_1(x),,,p_n(x)}.

3.0.

if R_p, then forall rin R_p,r is irreducibleLeftrightarrow r is primary.

Demonstration:

3.1.if R_i, then rin R_i,r is irreducibleLeftarrow r is primary.

Sup p=ab,

If p is primary,

Then p|ab,p|avee p|b,

If p|a,

Then a=xp,p=ab=xpb,

Due to R_psubset R_i,p is eliminated,

Then 1=xb,b is reversible,p is irreducible

3.2.if R_ithen rin R_i,r is irreducibleRightarrow r is primary.

If rin R,r is irreducible,

Then <r><br />
e R,<br />
eg exists ,s.t.<r>??R ,極大理想

If exists ,s.t.<r>subset subset R,

Then forall xin R,r=xa,

Due to r is irreducible.

Then xvee a is reversible,

If a is reversible,

Due to

Then =R,

If x is reversible,

Due to

Then =<xa>=<r>,

因為構成一對矛盾,

所以 <r> 是極大理想。

3.3.If r is irreducible,r|ab,  要證 r|avee r|b,r is primary

Due to

Then abin<r>

Known <r> 是極大理想,要證 ain <r>vee bin<r> .

If a
otin <r>,

Due to <r> 是極大理想

Then =R,

因為 =R,

所以 exists x,yin R,s.t.1=xa+yr.

If s.t.b	imes 1=b	imes(xa+yr).

Due to r|ab,s.t.r|xab

r|yrb,r|b,bin<r>

Similarly,

If b
otin <r>,

Then ain<r>, r is primary.

4.

If R_p,

Then forall {},exists  min Z,s.t.==,,,.

5.

If R_p,

u is unitary,

p_1,p_2,,,p_n are primary,

Then forall rin R,r
e 0,s.t.r=up_1p_2...p_n

2>除了排列次序 vee 可逆元u外,素元分解方式是唯一的。

eta .Special Proposition

0.

F[x] 是單變數多項式域, F 是域

1.

deg{p(x)} 是單變數多項式 p(x) 的最高階數degree,

2.

gcd{p_1,p_2,,,p_n} 是集合元素 {p_1,p_2,,,p_n} 的最大公因子,

3.

If 理想序列 I_1,I_2,,,I_n,forall I_isubset R,exists I_iin I_{i+1}

Then {I_i} 是環R的一個理想升鏈(Ascending Chain of Ideals),

4.

forall r,sin R,exists  xin R,s.t.s=x	imes r ,r|s對r是可除的(divisible),if

forall r,sin R,exists  xin R,s.t.s=x	imes r ,r|s對r是可除的(properly divisible),if

forall a,bin R,exists muin R,s.t.a=mu 	imes b ,a,b是相伴的(associated),if

exists 
uin R,exists muin R,s.t.1=
u	imes mumu 是可逆的(unitary,unit),if

r
e0,r=a	imes bRightarrow a 是可逆的 veeb 是可逆的 veer 是不可逆的,if

r 是不可約的/不可因的/不可還原的(irreducible),if

r
e 0,r|(a	imes b)Rightarrow r|avee r|bvee r是不可逆的,if

r 是素的(primary,prime),if

5.

<s>subset <r>rs 是可除的(divisible),if and only if

<s>subset<r>rs 是可真除的(properly divisible),if and only if

<s>=<r>r,s 是相伴的,if and only if

muin R,<mu>=Rmu 是可逆的,if and only if

6.

理想升鏈

If exists (I_1,I_2,,,I_n),forall I_isubset R,I_isubset I_{i+1},i=1,2,...,

Then {I_i} is ascending chain of ideals.


推薦閱讀:
查看原文 >>
相关文章