分離純化方法已成為目前的研究熱點之一。蛋白質的分離純化工作較為複雜,從細胞中提取的蛋白質或從含有蛋白質的溶液中經過沉澱、梯度離心、鹽析等方法得到的蛋白質經常含有雜質。要去除這些雜質,同時又要保持蛋白質的生物學活性,如酶的催化活性,就需要根據不同的蛋白質制定出相應的策略,採用不同的方法。

一、沉澱法

1、 鹽析

實驗原理:中和蛋白質表面電荷並破壞水化膜。

蛋白質易溶於水,因為其分子的-COOH -NH2和-OH都是親水基團,這些基團與極性水分子相互作用形成水化層,包圍於蛋白質分子周圍形成1~100 nm大小的親水膠體,從而削弱了蛋白質分子之間的作用力。當大量鹽加到蛋白質溶液中,高濃度的鹽離子(如硫酸銨的 SO42- 和NH4+)有很強的水化力,可奪取蛋白質分子的水化層,使之"失水",於是蛋白質膠粒凝結並沉澱析出。

2、等電點沉澱法:

實驗原理:利用蛋白質在等電點時溶解度最低而各種蛋白質又具有不同等電點的特點進行分離的方法。

在等電點時,蛋白質分子以兩性離子形式存在,其分子凈電荷為零(即正負電荷相等),此時蛋白質分子顆粒在溶液中因沒有相同電荷的相互排斥,分子相互之間的作用力減弱,其顆粒極易碰撞、凝聚而產生沉澱,所以蛋白質在等電點時,其溶解度最小,最易形成沉澱物。

注意點:不同的蛋白質,具有不同的等電點。同一種蛋白質在不同條件下,等電點不同。

3、有機溶劑沉澱法

實驗原理:加入有機溶劑使水溶液的介電常數降低,因而增加了兩個相反電荷基團之間的吸引力,促進了蛋白質分子的聚集和沉澱。

有機溶劑引起蛋白質沉澱的另一種解釋認為與鹽析相似,有機溶劑與蛋白質爭奪水化水,致使蛋白質脫除水化膜,而易於聚集形成沉澱。

影響因素:(一)有機溶劑的選擇 (二)溫度的控制 (三)pH值 (四)離子強度

用此法析出的沉澱一般比鹽析法易過濾或離心沉降,分離後的蛋白質沉澱應立即用水或者緩衝液溶解,以達到降低有機溶劑的濃度的目的。此法在血液製品的製備過程中較多使用。

二、層析

1、離子交換柱層析

實驗原理:以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。是發展最早的層析技術之一,目前已成為蛋白質分離純化最常用的手段,是基於蛋白質電荷不同的分離技術。

離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。

2、疏水相互作用層析

實驗原理:根據分子表面疏水性差別來分離蛋白質和多肽等生物大分子的一種較為常用的方法。

蛋白質和多肽等生物大分子的表面常常暴露著一些疏水性基團,我們把這些疏水性基團稱為疏水補丁,疏水補丁可以與疏水性層析介質發生疏水性相互作用而結合。不同的分子由於疏水性不同,它們與疏水性層析介質之間的疏水性作用力強弱不同,疏水作用層析就是依據這一原理分離純化蛋白質和多肽等生物大分子的。

3、親和層析

實驗原理:利用蛋白質能和某些專一分子可逆結合的特性,

當蛋白質溶液通過層析柱時,其中可與親和載體配基相互作用的受體被吸附劑結合,不被吸附的無關成分則可隨流出液通過柱體,從而將吸附蛋白與其他蛋白質分開。此法特異性強,收率高。

4、凝膠層析

實驗原理:根據分子大小分離蛋白混合物的最有效的方法之一。混合物隨流動相流經裝有凝膠固定相的層析柱時,其中各物質因分子大小的的不同而被分離的技術。

三、離心

1、速率區帶離心法

實驗原理根據分離的粒子在離心力作用下,因其在梯度液中沉降速度的不同,離心後具有不同沉降速度的粒子處於不同的密度梯度層內,形成幾條分開的樣品區帶,達到彼此分離的目的。

由於此法是一種不完全的沉降,沉降受物質本身大小的影響較大,一般是應用在物質大小相異而密度相同的情況。容量小,只能用於少量的製備。

2、差速離心法

實驗原理:利用樣品中各組分沉降係數的差異,對不同的微粒施以不同的離心力,經過多次離心,離心速度逐步加大,將不同的微粒依次沉降,從而實現離心分離。

四、膜分離

1、超濾法

是利用加壓膜分離技術,在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製薄膜,大分子溶質滯留,從而使大分子物質得到部分的純化。常和離子交換,凝膠過濾聯合使用。

2、透析

是利用小分子經過半透膜擴散到水( 或緩衝液) 的原理,將無機鹽等小分子與生物大分子分開的一種分離純化技術,常和鹽析,鹽溶等方法聯合使用。

以上就是蛋白純化分離的實驗總結了!歡迎各位實驗小夥伴們留言討論!

推薦閱讀:

相關文章