前言

此係列文章會詳細解讀NIO的功能逐步豐滿的路程,為Reactor-Netty 庫的講解鋪平道路。

關於Java編程方法論-Reactor與Webflux的視頻分享,已經完成了Rxjava 與 Reactor,b站地址如下:Rxjava源碼解讀與分享:bilibili.com/video/av34Reactor源碼解讀與分享:bilibili.com/video/av35

本系列源碼解讀基於JDK11 api細節可能與其他版本有所差別,請自行解決jdk版本問題。

本系列前幾篇: BIO到NIO源碼的一些事兒之BIO BIO到NIO源碼的一些事兒之NIO 上 BIO到NIO源碼的一些事兒之NIO 中

SelectionKey的引入

如我們在前面內容所講,在學生確定之後,我們就要對其狀態進行設定,然後再交由Selector進行管理,其狀態的設定我們就通過SelectionKey來進行。

那這裡我們先通過之前在Channel中並未仔細講解的SelectableChannel下的register方法。我們前面有提到過, SelectableChannelchannel打造成可以通過Selector來進行多路復用。作為管理者,channel想要實現復用,就必須在管理者這裡進行註冊登記。所以,SelectableChannel下的register方法也就是我們值得二次關注的核心了,也是對接我們接下來內容的切入點,對於register方法的解讀,請看我們之前的文章BIO到NIO源碼的一些事兒之NIO 上 中賦予Channel可被多路復用的能力這一節的內容。

這裡要記住的是SelectableChannel是對接channel特徵(即SelectionKey)的關鍵所在,這有點類似於表設計,原本可以將特徵什麼的設定在一張表內,但為了操作更加具有針對性,即為了讓代碼功能更易於管理,就進行抽取並設計了第二張表,這個就有點像人體器官,整體上大家共同協作完成一件事,但器官內部自己專註於自己的主要特定功能,偶爾也具備其他器官的一些小功能。

由此,我們也就可以知道,SelectionKey表示一個SelectableChannelSelector關聯的標記,可以簡單理解為一個token。就好比是我們做許可權管理系統用戶登錄後前臺會從後臺拿到的一個token一樣,用戶可以憑藉此token來訪問操作相應的資源信息。

//java.nio.channels.spi.AbstractSelectableChannel#register
public final SelectionKey register(Selector sel, int ops, Object att)
throws ClosedChannelException
{ ...
synchronized (regLock) {
...
synchronized (keyLock) {
...
SelectionKey k = findKey(sel);
if (k != null) {
k.attach(att);
k.interestOps(ops);
} else {
// New registration
k = ((AbstractSelector)sel).register(this, ops, att);
addKey(k);
}
return k;
}
}
}

結合上下兩段源碼,在每次Selector使用register方法註冊channel時,都會創建並返回一個SelectionKey

//sun.nio.ch.SelectorImpl#register
@Override
protected final SelectionKey register(AbstractSelectableChannel ch,
int ops,
Object attachment)
{
if (!(ch instanceof SelChImpl))
throw new IllegalSelectorException();
SelectionKeyImpl k = new SelectionKeyImpl((SelChImpl)ch, this);
k.attach(attachment);

// register (if needed) before adding to key set
implRegister(k);

// add to the selectors key set, removing it immediately if the selector
// is closed. The key is not in the channels key set at this point but
// it may be observed by a thread iterating over the selectors key set.
keys.add(k);
try {
k.interestOps(ops);
} catch (ClosedSelectorException e) {
assert ch.keyFor(this) == null;
keys.remove(k);
k.cancel();
throw e;
}
return k;
}

我們在BIO到NIO源碼的一些事兒之NIO 上 中賦予Channel可被多路復用的能力這一節的內容知道,一旦註冊到Selector上,Channel將一直保持註冊直到其被解除註冊。在解除註冊的時候會解除Selector分配給Channel的所有資源。 也就是SelectionKey在其調用SelectionKey#channel方法,或這個key所代表的channel 關閉,抑或此key所關聯的Selector關閉之前,都是有效。我們在前面的文章分析中也知道,取消一個SelectionKey,不會立刻從Selector移除,它將被添加到SelectorcancelledKeys這個Set集合中,以便在下一次選擇操作期間刪除,我們可以通過java.nio.channels.SelectionKey#isValid判斷一個SelectionKey是否有效。

SelectionKey包含四個操作集,每個操作集用一個Int來表示,int值中的低四位的bit 用於表示channel支持的可選操作種類。 ``` java

/**
* Operation-set bit for read operations.
*/
public static final int OP_READ = 1 << 0;

/**
* Operation-set bit for write operations.
*/
public static final int OP_WRITE = 1 << 2;

/**
* Operation-set bit for socket-connect operations.
*/
public static final int OP_CONNECT = 1 << 3;

/**
* Operation-set bit for socket-accept operations.
*/
public static final int OP_ACCEPT = 1 << 4;

```

interestOps

通過interestOps來確定了selector在下一個選擇操作的過程中將測試哪些操作類別的準備情況,操作事件是否是channel關注的。interestOpsSelectionKey創建時,初始化為註冊Selector時的ops值,這個值可通過sun.nio.ch.SelectionKeyImpl#interestOps(int)來改變,這點我們在SelectorImpl#register可以清楚的看到。 ``` java //sun.nio.ch.SelectionKeyImpl public final class SelectionKeyImpl extends AbstractSelectionKey { private static final VarHandle INTERESTOPS = ConstantBootstraps.fieldVarHandle( MethodHandles.lookup(), "interestOps", VarHandle.class, SelectionKeyImpl.class, int.class);

private final SelChImpl channel;
private final SelectorImpl selector;

private volatile int interestOps;
private volatile int readyOps;

// registered events in kernel, used by some Selector implementations
private int registeredEvents;

// index of key in pollfd array, used by some Selector implementations
private int index;

SelectionKeyImpl(SelChImpl ch, SelectorImpl sel) {
channel = ch;
selector = sel;
}

... } ```

readyOps

readyOps表示通過Selector檢測到channel已經準備就緒的操作事件。在SelectionKey創建時(即上面源碼所示),readyOps值為0,在Selectorselect操作中可能會更新,但是需要注意的是我們不能直接調用來更新。

SelectionKeyreadyOps表示一個channel已經為某些操作準備就緒,但不能保證在針對這個就緒事件類型的操作過程中不會發生阻塞,即該操作所在線程有可能會發生阻塞。在完成select操作後,大部分情況下會立即對readyOps更新,此時readyOps值最準確,如果外部的事件或在該channel有IO操作,readyOps可能不準確。所以,我們有看到其是volatile類型。

SelectionKey定義了所有的操作事件,但是具體channel支持的操作事件依賴於具體的channel,即具體問題具體分析。 所有可選擇的channel(即SelectableChannel的子類)都可以通過SelectableChannel#validOps方法,判斷一個操作事件是否被channel所支持,即每個子類都會有對validOps的實現,返回一個數字,僅標識channel支持的哪些操作。嘗試設置或測試一個不被channel所支持的操作設定,將會拋出相關的運行時異常。 不同應用場景下,其所支持的Ops是不同的,摘取部分如下所示:

//java.nio.channels.SocketChannel#validOps
public final int validOps() {
//即1|4|8 1101
return (SelectionKey.OP_READ
| SelectionKey.OP_WRITE
| SelectionKey.OP_CONNECT);
}
//java.nio.channels.ServerSocketChannel#validOps
public final int validOps() {
// 16
return SelectionKey.OP_ACCEPT;
}
//java.nio.channels.DatagramChannel#validOps
public final int validOps() {
// 1|4
return (SelectionKey.OP_READ
| SelectionKey.OP_WRITE);
}

如果需要經常關聯一些我們程序中指定數據到SelectionKey,比如一個我們使用一個object表示上層的一種高級協議的狀態,object用於通知實現協議處理器。所以,SelectionKey支持通過attach方法將一個對象附加到SelectionKeyattachment上。attachment可以通過java.nio.channels.SelectionKey#attachment方法進行訪問。如果要取消該對象,則可以通過該種方式:selectionKey.attach(null)

需要注意的是如果附加的對象不再使用,一定要人為清除,如果沒有,假如此SelectionKey一直存在,由於此處屬於強引用,那麼垃圾回收器不會回收該對象,若不清除的話會成內存泄漏。

SelectionKey在由多線程並發使用時,是線程安全的。我們只需要知道,Selectorselect操作會一直使用在調用該操作開始時當前的interestOps所設定的值。

Selector探究

到現在為止,我們已經多多少少接觸了Selector,其是一個什麼樣的角色,想必都很清楚了,那我們就在我們已經接觸到的來進一步深入探究Selector的設計運行機制。

Selector的open方法

從命名上就可以知道 SelectableChannel對象是依靠Selector來實現多路復用的。 我們可以通過調用java.nio.channels.Selector#open來創建一個selector對象:

//java.nio.channels.Selector#open
public static Selector open() throws IOException {
return SelectorProvider.provider().openSelector();
}

關於這個SelectorProvider.provider(),其使用了根據所在系統的默認實現,我這裡是windows系統,那麼其默認實現為sun.nio.ch.WindowsSelectorProvider,這樣,就可以調用基於相應系統的具體實現了。

//java.nio.channels.spi.SelectorProvider#provider
public static SelectorProvider provider() {
synchronized (lock) {
if (provider != null)
return provider;
return AccessController.doPrivileged(
new PrivilegedAction<>() {
public SelectorProvider run() {
if (loadProviderFromProperty())
return provider;
if (loadProviderAsService())
return provider;
provider = sun.nio.ch.DefaultSelectorProvider.create();
return provider;
}
});
}
}
//sun.nio.ch.DefaultSelectorProvider
public class DefaultSelectorProvider {

/**
* Prevent instantiation.
*/
private DefaultSelectorProvider() { }

/**
* Returns the default SelectorProvider.
*/
public static SelectorProvider create() {
return new sun.nio.ch.WindowsSelectorProvider();
}

}

基於windows來講,selector這裡最終會使用sun.nio.ch.WindowsSelectorImpl來做一些核心的邏輯。

public class WindowsSelectorProvider extends SelectorProviderImpl {

public AbstractSelector openSelector() throws IOException {
return new WindowsSelectorImpl(this);
}
}

這裡,我們需要來看一下WindowsSelectorImpl的構造函數:

//sun.nio.ch.WindowsSelectorImpl#WindowsSelectorImpl
WindowsSelectorImpl(SelectorProvider sp) throws IOException {
super(sp);
pollWrapper = new PollArrayWrapper(INIT_CAP);
wakeupPipe = Pipe.open();
wakeupSourceFd = ((SelChImpl)wakeupPipe.source()).getFDVal();

// Disable the Nagle algorithm so that the wakeup is more immediate
SinkChannelImpl sink = (SinkChannelImpl)wakeupPipe.sink();
(sink.sc).socket().setTcpNoDelay(true);
wakeupSinkFd = ((SelChImpl)sink).getFDVal();

pollWrapper.addWakeupSocket(wakeupSourceFd, 0);
}

我們由Pipe.open()就可知道selector會保持打開的狀態,直到其調用它的close方法:

//java.nio.channels.spi.AbstractSelector#close
public final void close() throws IOException {
boolean open = selectorOpen.getAndSet(false);
if (!open)
return;
implCloseSelector();
}
//sun.nio.ch.SelectorImpl#implCloseSelector
@Override
public final void implCloseSelector() throws IOException {
wakeup();
synchronized (this) {
implClose();
synchronized (publicSelectedKeys) {
// Deregister channels
Iterator<SelectionKey> i = keys.iterator();
while (i.hasNext()) {
SelectionKeyImpl ski = (SelectionKeyImpl)i.next();
deregister(ski);
SelectableChannel selch = ski.channel();
if (!selch.isOpen() && !selch.isRegistered())
((SelChImpl)selch).kill();
selectedKeys.remove(ski);
i.remove();
}
assert selectedKeys.isEmpty() && keys.isEmpty();
}
}
}
//sun.nio.ch.WindowsSelectorImpl#implClose
@Override
protected void implClose() throws IOException {
assert !isOpen();
assert Thread.holdsLock(this);

// prevent further wakeup
synchronized (interruptLock) {
interruptTriggered = true;
}

wakeupPipe.sink().close();
wakeupPipe.source().close();
pollWrapper.free();

// Make all remaining helper threads exit
for (SelectThread t: threads)
t.makeZombie();
startLock.startThreads();
}

可以看到,前面的wakeupPipe在close方法中關閉掉了。這裡的close方法中又涉及了wakeupPipe.sink()wakeupPipe.source()的關閉與pollWrapper.free()的釋放,此處也是我們本篇的難點所在,這裡,我們來看看它們到底是什麼樣的存在。 首先,我們對WindowsSelectorImpl(SelectorProvider sp)這個構造函數做下梳理: - 創建一個PollArrayWrapper對象(pollWrapper); - Pipe.open()打開一個管道; - 拿到wakeupSourceFdwakeupSinkFd兩個文件描述符; - 把pipe內Source端的文件描述符(wakeupSourceFd)放到pollWrapper裏;

Pipe.open()的解惑

這裡我們會有疑惑,為什麼要創建一個管道,它是用來做什麼的。

我們來看Pipe.open()源碼實現:

//java.nio.channels.Pipe#open
public static Pipe open() throws IOException {
return SelectorProvider.provider().openPipe();
}
//sun.nio.ch.SelectorProviderImpl#openPipe
public Pipe openPipe() throws IOException {
return new PipeImpl(this);
}
//sun.nio.ch.PipeImpl#PipeImpl
PipeImpl(final SelectorProvider sp) throws IOException {
try {
AccessController.doPrivileged(new Initializer(sp));
} catch (PrivilegedActionException x) {
throw (IOException)x.getCause();
}
}
private class Initializer
implements PrivilegedExceptionAction<Void>
{

private final SelectorProvider sp;

private IOException ioe = null;

private Initializer(SelectorProvider sp) {
this.sp = sp;
}

@Override
public Void run() throws IOException {
LoopbackConnector connector = new LoopbackConnector();
connector.run();
if (ioe instanceof ClosedByInterruptException) {
ioe = null;
Thread connThread = new Thread(connector) {
@Override
public void interrupt() {}
};
connThread.start();
for (;;) {
try {
connThread.join();
break;
} catch (InterruptedException ex) {}
}
Thread.currentThread().interrupt();
}

if (ioe != null)
throw new IOException("Unable to establish loopback connection", ioe);

return null;
}

從上述源碼我們可以知道,創建了一個PipeImpl對象, 在PipeImpl的構造函數裏會執行AccessController.doPrivileged,在它調用後緊接著會執行Initializerrun方法:

//sun.nio.ch.PipeImpl.Initializer.LoopbackConnector
private class LoopbackConnector implements Runnable {

@Override
public void run() {
ServerSocketChannel ssc = null;
SocketChannel sc1 = null;
SocketChannel sc2 = null;

try {
// Create secret with a backing array.
ByteBuffer secret = ByteBuffer.allocate(NUM_SECRET_BYTES);
ByteBuffer bb = ByteBuffer.allocate(NUM_SECRET_BYTES);

// Loopback address
InetAddress lb = InetAddress.getLoopbackAddress();
assert(lb.isLoopbackAddress());
InetSocketAddress sa = null;
for(;;) {
// Bind ServerSocketChannel to a port on the loopback
// address
if (ssc == null || !ssc.isOpen()) {
ssc = ServerSocketChannel.open();
ssc.socket().bind(new InetSocketAddress(lb, 0));
sa = new InetSocketAddress(lb, ssc.socket().getLocalPort());
}

// Establish connection (assume connections are eagerly
// accepted)
sc1 = SocketChannel.open(sa);
RANDOM_NUMBER_GENERATOR.nextBytes(secret.array());
do {
sc1.write(secret);
} while (secret.hasRemaining());
secret.rewind();

// Get a connection and verify it is legitimate
sc2 = ssc.accept();
do {
sc2.read(bb);
} while (bb.hasRemaining());
bb.rewind();

if (bb.equals(secret))
break;

sc2.close();
sc1.close();
}

// Create source and sink channels
source = new SourceChannelImpl(sp, sc1);
sink = new SinkChannelImpl(sp, sc2);
} catch (IOException e) {
try {
if (sc1 != null)
sc1.close();
if (sc2 != null)
sc2.close();
} catch (IOException e2) {}
ioe = e;
} finally {
try {
if (ssc != null)
ssc.close();
} catch (IOException e2) {}
}
}
}
}

這裡即為創建pipe的過程,windows下的實現是創建兩個本地的socketChannel,然後連接(連接的過程通過寫一個隨機數據做兩個socket的連接校驗),兩個socketChannel分別實現了管道pipesourcesink端。 而我們依然不清楚這個pipe到底幹什麼用的, 假如大家熟悉系統調用的C/C++的話,就可以知道,一個阻塞在select上的線程有以下三種方式可以被喚醒:

  1. 有數據可讀/寫,或出現異常。
  2. 阻塞時間到,即time out
  3. 收到一個non-block的信號。可由killpthread_kill發出。

所以,Selector.wakeup()要喚醒阻塞的select,那麼也只能通過這三種方法,其中:

  • 第二種方法可以排除,因為select一旦阻塞,無法修改其time out時間。
  • 而第三種看來只能在Linux上實現,Windows上沒有這種信號通知的機制。

看來只有第一種方法了。假如我們多次調用Selector.open(),那麼在Windows上會每調用一次,就會建立一對自己和自己的loopbackTCP連接;在Linux上的話,每調用一次,會開一對pipe(pipe在Linux下一般都成對打開),到這裡,估計我們能夠猜得出來——那就是如果想要喚醒select,只需要朝著自己的這個loopback連接發點數據過去,於是,就可以喚醒阻塞在select上的線程了。

我們對上面所述做下總結:在Windows下,Java虛擬機在Selector.open()時會自己和自己建立loopbackTCP連接;在Linux下,Selector會創建pipe。這主要是為了Selector.wakeup()可以方便喚醒阻塞在select()系統調用上的線程(通過向自己所建立的TCP鏈接和管道上隨便寫點什麼就可以喚醒阻塞線程)。

PollArrayWrapper解讀

WindowsSelectorImpl構造器最後,我們看到這一句代碼:pollWrapper.addWakeupSocket(wakeupSourceFd, 0);,即把pipe內Source端的文件描述符(wakeupSourceFd)放到pollWrapper裏。pollWrapper作為PollArrayWrapper的實例,它到底是什麼,這一節,我們就來對其探索一番。

class PollArrayWrapper {

private AllocatedNativeObject pollArray; // The fd array

long pollArrayAddress; // pollArrayAddress

@Native private static final short FD_OFFSET = 0; // fd offset in pollfd
@Native private static final short EVENT_OFFSET = 4; // events offset in pollfd

static short SIZE_POLLFD = 8; // sizeof pollfd struct

private int size; // Size of the pollArray

PollArrayWrapper(int newSize) {
int allocationSize = newSize * SIZE_POLLFD;
pollArray = new AllocatedNativeObject(allocationSize, true);
pollArrayAddress = pollArray.address();
this.size = newSize;
}

...

// Access methods for fd structures
void putDescriptor(int i, int fd) {
pollArray.putInt(SIZE_POLLFD * i + FD_OFFSET, fd);
}

void putEventOps(int i, int event) {
pollArray.putShort(SIZE_POLLFD * i + EVENT_OFFSET, (short)event);
}
...
// Adds Windows wakeup socket at a given index.
void addWakeupSocket(int fdVal, int index) {
putDescriptor(index, fdVal);
putEventOps(index, Net.POLLIN);
}
}

這裡將wakeupSourceFdPOLLIN事件標識為pollArrayEventOps的對應的值,這裡使用的是unsafe直接操作的內存,也就是相對於這個pollArray所在內存地址的偏移量SIZE_POLLFD * i + EVENT_OFFSET這個位置上寫入Net.POLLIN所代表的值,即參考下面本地方法相關源碼所展示的值。putDescriptor同樣是這種類似操作。當sink端有數據寫入時,source對應的文件描述符wakeupSourceFd就會處於就緒狀態。

//java.base/windows/native/libnio/ch/nio_util.h
/* WSAPoll()/WSAPOLLFD and the corresponding constants are only defined */
/* in Windows Vista / Windows Server 2008 and later. If we are on an */
/* older release we just use the Solaris constants as this was previously */
/* done in PollArrayWrapper.java. */
#define POLLIN 0x0001
#define POLLOUT 0x0004
#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAL 0x0020
#define POLLCONN 0x0002

AllocatedNativeObject這個類的父類有大量的unsafe類的操作,這些都是直接基於內存級別的操作。從其父類的構造器中,我們能也清楚的看到pollArray是通過unsafe.allocateMemory(size + ps)分配的一塊系統內存。

class AllocatedNativeObject // package-private
extends NativeObject
{
/**
* Allocates a memory area of at least {@code size} bytes outside of the
* Java heap and creates a native object for that area.
*/
AllocatedNativeObject(int size, boolean pageAligned) {
super(size, pageAligned);
}

/**
* Frees the native memory area associated with this object.
*/
synchronized void free() {
if (allocationAddress != 0) {
unsafe.freeMemory(allocationAddress);
allocationAddress = 0;
}
}

}
//sun.nio.ch.NativeObject#NativeObject(int, boolean)
protected NativeObject(int size, boolean pageAligned) {
if (!pageAligned) {
this.allocationAddress = unsafe.allocateMemory(size);
this.address = this.allocationAddress;
} else {
int ps = pageSize();
long a = unsafe.allocateMemory(size + ps);
this.allocationAddress = a;
this.address = a + ps - (a & (ps - 1));
}
}

至此,我們算是完成了對Selector.open()的解讀,其主要任務就是完成建立Pipe,並把pipe source端的wakeupSourceFd放入pollArray中,這個pollArraySelector完成其角色任務的樞紐。本篇主要圍繞Windows的實現來進行分析,即在windows下通過兩個連接的socketChannel實現了Pipelinux下則直接使用系統的pipe即可。

SelectionKey在selector中的管理

SelectionKey在selector中註冊

所謂的註冊,其實就是將一個對象放到註冊地對象內的一個容器欄位上,這個欄位可以是數組,隊列,也可以是一個set集合,也可以是一個list。這裡,同樣是這樣,只不過,其需要有個返回值,那麼把這個要放入集合的對象返回即可。

//sun.nio.ch.SelectorImpl#register
@Override
protected final SelectionKey register(AbstractSelectableChannel ch,
int ops,
Object attachment)
{
if (!(ch instanceof SelChImpl))
throw new IllegalSelectorException();
SelectionKeyImpl k = new SelectionKeyImpl((SelChImpl)ch, this);
k.attach(attachment);

// register (if needed) before adding to key set
implRegister(k);

// add to the selectors key set, removing it immediately if the selector
// is closed. The key is not in the channels key set at this point but
// it may be observed by a thread iterating over the selectors key set.
keys.add(k);
try {
k.interestOps(ops);
} catch (ClosedSelectorException e) {
assert ch.keyFor(this) == null;
keys.remove(k);
k.cancel();
throw e;
}
return k;
}
//sun.nio.ch.WindowsSelectorImpl#implRegister
@Override
protected void implRegister(SelectionKeyImpl ski) {
ensureOpen();
synchronized (updateLock) {
newKeys.addLast(ski);
}
}

這段代碼我們之前已經有看過,這裡我們再次溫習下。 首先會新建一個SelectionKeyImpl對象,這個對象就是對Channel的包裝,不僅如此,還順帶把當前這個Selector對象給收了進去,這樣,我們也可以通過SelectionKey的對象來拿到其對應的Selector對象。

接著,基於windows平臺實現的implRegister,先通過ensureOpen()來確保該Selector是打開的。接著將這個SelectionKeyImpl加入到WindowsSelectorImpl內針對於新註冊SelectionKey進行管理的newKeys之中,newKeys是一個ArrayDeque對象。對於ArrayDeque有不懂的,可以參考Java 容器源碼分析之 Deque 與 ArrayDeque這篇文章。

然後再將此這個SelectionKeyImpl加入到sun.nio.ch.SelectorImpl#keys中去,這個Set<SelectionKey>集合代表那些已經註冊到當前這個Selector對象上的SelectionKey集合。我們來看sun.nio.ch.SelectorImpl的構造函數:

//sun.nio.ch.SelectorImpl#SelectorImpl
protected SelectorImpl(SelectorProvider sp) {
super(sp);
keys = ConcurrentHashMap.newKeySet();
selectedKeys = new HashSet<>();
publicKeys = Collections.unmodifiableSet(keys);
publicSelectedKeys = Util.ungrowableSet(selectedKeys);
}

也就是說,這裡的publicKeys就來源於keys,只是publicKeys屬於只讀的,我們想要知道當前Selector對象上所註冊的keys,就可以調用sun.nio.ch.SelectorImpl#keys來得到:

//sun.nio.ch.SelectorImpl#keys
@Override
public final Set<SelectionKey> keys() {
ensureOpen();
return publicKeys;
}

再回到這個構造函數中,selectedKeys,顧名思義,其屬於已選擇Keys,即前一次操作期間,已經準備就緒的Channel所對應的SelectionKey。此集合為keys的子集。通過selector.selectedKeys()獲取。

//sun.nio.ch.SelectorImpl#selectedKeys
@Override
public final Set<SelectionKey> selectedKeys() {
ensureOpen();
return publicSelectedKeys;
}

我們看到其返回的是publicSelectedKeys,針對這個欄位裏的元素操作可以做刪除,但不能做增加。 在前面的內容中,我們有涉及到SelectionKey的取消,所以,我們在java.nio.channels.spi.AbstractSelector方法內,是有定義cancelledKeys的,也是一個HashSet對象。其代表已經被取消但尚未取消註冊(deregister)的SelectionKey。此Set集合無法直接訪問,同樣,它也是keys()的子集。

對於新的Selector實例,上面幾個集合均為空。由上面展示的源碼可知,通過channel.registerSelectionKey添加keys中,此為key的來源。 如果某個selectionKey.cancel()被調用,那麼此key將會被添加到cancelledKeys這個集合中,然後在下一次調用selector select方法期間,此時canceldKeys不為空,將會觸發此SelectionKeyderegister操作(釋放資源,並從keys中移除)。無論通過channel.close()還是通過selectionKey.cancel(),都會導致SelectionKey被加入到cannceldKey中.

每次選擇操作(select)期間,都可以將key添加到selectedKeys中或者將從cancelledKeys中移除。

Selector的select方法的解讀

瞭解了上面的這些,我們來進入到select方法中,觀察下它的細節。由Selector的api可知,select操作有兩種形式,一種為 select(),selectNow(),select(long timeout);另一種為select(Consumer<SelectionKey> action, long timeout)select(Consumer<SelectionKey> action)selectNow(Consumer<SelectionKey> action)。後者為JDK11新加入的api,主要針對那些準備好進行I/O操作的channels在select過程中對相應的key進行的一個字的自定義的一個操作。 需要注意的是,有Consumer<SelectionKey> action參數的select操作是阻塞的,只有在選擇了至少一個Channel的情況下,才會調用此Selector實例的wakeup方法來喚醒,同樣,其所在線程被打斷也可以。

//sun.nio.ch.SelectorImpl
@Override
public final int select(long timeout) throws IOException {
if (timeout < 0)
throw new IllegalArgumentException("Negative timeout");
return lockAndDoSelect(null, (timeout == 0) ? -1 : timeout);
}

//sun.nio.ch.SelectorImpl
@Override
public final int select(Consumer<SelectionKey> action, long timeout)
throws IOException
{
Objects.requireNonNull(action);
if (timeout < 0)
throw new IllegalArgumentException("Negative timeout");
return lockAndDoSelect(action, (timeout == 0) ? -1 : timeout);
}
//sun.nio.ch.SelectorImpl#lockAndDoSelect
private int lockAndDoSelect(Consumer<SelectionKey> action, long timeout)
throws IOException
{
synchronized (this) {
ensureOpen();
if (inSelect)
throw new IllegalStateException("select in progress");
inSelect = true;
try {
synchronized (publicSelectedKeys) {
return doSelect(action, timeout);
}
} finally {
inSelect = false;
}
}
}

我們可以觀察,無論哪種,它們最後都落在了lockAndDoSelect這個方法上,最終會執行特定系統上的doSelect(action, timeout)實現。 這裡我們以sun.nio.ch.WindowsSelectorImpl#doSelect為例來講述其操作執行的步驟:

// sun.nio.ch.WindowsSelectorImpl#doSelect
@Override
protected int doSelect(Consumer<SelectionKey> action, long timeout)
throws IOException
{
assert Thread.holdsLock(this);
this.timeout = timeout; // set selector timeout
processUpdateQueue(); // <1>
processDeregisterQueue(); // <2>
if (interruptTriggered) {
resetWakeupSocket();
return 0;
}
// Calculate number of helper threads needed for poll. If necessary
// threads are created here and start waiting on startLock
adjustThreadsCount();
finishLock.reset(); // reset finishLock
// Wakeup helper threads, waiting on startLock, so they start polling.
// Redundant threads will exit here after wakeup.
startLock.startThreads();
// do polling in the main thread. Main thread is responsible for
// first MAX_SELECTABLE_FDS entries in pollArray.
try {
begin();
try {
subSelector.poll(); // <3>
} catch (IOException e) {
finishLock.setException(e); // Save this exception
}
// Main thread is out of poll(). Wakeup others and wait for them
if (threads.size() > 0)
finishLock.waitForHelperThreads();
} finally {
end();
}
// Done with poll(). Set wakeupSocket to nonsignaled for the next run.
finishLock.checkForException();
processDeregisterQueue(); // <4>
int updated = updateSelectedKeys(action); // <5>
// Done with poll(). Set wakeupSocket to nonsignaled for the next run.
resetWakeupSocket(); // <6>
return updated;
}

processUpdateQueue解讀

  1. 首先通過相應操作系統實現類(此處是WindowsSelectorImpl)的具體實現我們可以知道,通過<1> 處的 processUpdateQueue()獲得關於每個剩餘Channel(有些Channel取消了)的在此刻的interestOps,這裡包括新註冊的和updateKeys,並對其進行pollWrapper的管理操作。
  • 即對於新註冊的SelectionKeyImpl,我們在相對於這個pollArray所在內存地址的偏移量SIZE_POLLFD * totalChannels + FD_OFFSETSIZE_POLLFD * totalChannels + EVENT_OFFSET分別存入SelectionKeyImpl的文件描述符fd與其對應的EventOps(初始為0)。
  • updateKeys,因為是其之前已經在pollArray的某個相對位置上存儲過,這裡我們還需要對拿到的key的有效性進行判斷,如果有效,只需要將正在操作的這個SelectionKeyImpl對象的interestOps寫入到在pollWrapper中的存放它的EventOps位置上。

注意: 在對newKeys進行key的有效性判斷之後,如果有效,會調用growIfNeeded()方法,這裡首先會判斷channelArray.length == totalChannels,此為一個SelectionKeyImpl的數組,初始容量大小為8。channelArray其實就是方便Selector管理在冊SelectionKeyImpl數量的一個數組而已,通過判斷它的數組長度大小,如果和totalChannels(初始值為1)相等,不僅僅是為了channelArray擴容,更重要的是為了輔助pollWrapper,讓pollWrapper擴容纔是這裡的目的所在。 而當totalChannels % MAX_SELECTABLE_FDS == 0時,則多開一個線程處理selectorwindowsselect系統調用有最大文件描述符限制,一次只能輪詢1024個文件描述符,如果多於1024個,需要多線程進行輪詢。通過ski.setIndex(totalChannels)選擇鍵記錄下在數組中的索引位置SelectionKeyImpl選擇鍵的映射關係,以待後續使用。同時調用pollWrapper.addWakeupSocket(wakeupSourceFd, totalChannels)在相對於這個pollArray所在內存地址的偏移量SIZE_POLLFD * totalChannels + FD_OFFSET這個位置上寫入wakeupSourceFd所代表的fdVal值。這樣在新起的線程就可以通過MAX_SELECTABLE_FDS來確定這個用來監控的wakeupSourceFd

/**
* sun.nio.ch.WindowsSelectorImpl#processUpdateQueue
* Process new registrations and changes to the interest ops.
*/
private void processUpdateQueue() {
assert Thread.holdsLock(this);

synchronized (updateLock) {
SelectionKeyImpl ski;

// new registrations
while ((ski = newKeys.pollFirst()) != null) {
if (ski.isValid()) {
growIfNeeded();
channelArray[totalChannels] = ski;
ski.setIndex(totalChannels);
pollWrapper.putEntry(totalChannels, ski);
totalChannels++;
MapEntry previous = fdMap.put(ski);
assert previous == null;
}
}

// changes to interest ops
while ((ski = updateKeys.pollFirst()) != null) {
int events = ski.translateInterestOps();
int fd = ski.getFDVal();
if (ski.isValid() && fdMap.containsKey(fd)) {
int index = ski.getIndex();
assert index >= 0 && index < totalChannels;
pollWrapper.putEventOps(index, events);
}
}
}
}

//sun.nio.ch.PollArrayWrapper#putEntry
// Prepare another pollfd struct for use.
void putEntry(int index, SelectionKeyImpl ski) {
putDescriptor(index, ski.getFDVal());
putEventOps(index, 0);
}
//sun.nio.ch.WindowsSelectorImpl#growIfNeeded
private void growIfNeeded() {
if (channelArray.length == totalChannels) {
int newSize = totalChannels * 2; // Make a larger array
SelectionKeyImpl temp[] = new SelectionKeyImpl[newSize];
System.arraycopy(channelArray, 1, temp, 1, totalChannels - 1);
channelArray = temp;
pollWrapper.grow(newSize);
}
if (totalChannels % MAX_SELECTABLE_FDS == 0) { // more threads needed
pollWrapper.addWakeupSocket(wakeupSourceFd, totalChannels);
totalChannels++;
threadsCount++;
}
}
// Initial capacity of the poll array
private final int INIT_CAP = 8;
// Maximum number of sockets for select().
// Should be INIT_CAP times a power of 2
private static final int MAX_SELECTABLE_FDS = 1024;

// The list of SelectableChannels serviced by this Selector. Every mod
// MAX_SELECTABLE_FDS entry is bogus, to align this array with the poll
// array, where the corresponding entry is occupied by the wakeupSocket
private SelectionKeyImpl[] channelArray = new SelectionKeyImpl[INIT_CAP];
// The number of valid entries in poll array, including entries occupied
// by wakeup socket handle.
private int totalChannels = 1;

//sun.nio.ch.PollArrayWrapper#grow
// Grows the pollfd array to new size
void grow(int newSize) {
PollArrayWrapper temp = new PollArrayWrapper(newSize);
for (int i = 0; i < size; i++)
replaceEntry(this, i, temp, i);
pollArray.free();
pollArray = temp.pollArray;
this.size = temp.size;
pollArrayAddress = pollArray.address();
}

// Maps file descriptors to their indices in pollArray
private static final class FdMap extends HashMap<Integer, MapEntry> {
static final long serialVersionUID = 0L;
private MapEntry get(int desc) {
return get(Integer.valueOf(desc));
}
private MapEntry put(SelectionKeyImpl ski) {
return put(Integer.valueOf(ski.getFDVal()), new MapEntry(ski));
}
private MapEntry remove(SelectionKeyImpl ski) {
Integer fd = Integer.valueOf(ski.getFDVal());
MapEntry x = get(fd);
if ((x != null) && (x.ski.channel() == ski.channel()))
return remove(fd);
return null;
}
}

// class for fdMap entries
private static final class MapEntry {
final SelectionKeyImpl ski;
long updateCount = 0;
MapEntry(SelectionKeyImpl ski) {
this.ski = ski;
}
}
private final FdMap fdMap = new FdMap();

processDeregisterQueue解讀

  1. 接著通過上面WindowsSelectorImpl#doSelect展示源碼中<2> 處的 processDeregisterQueue()
  2. cancelledKeys進行清除,遍歷cancelledKeys,並對每個key進行deregister操作,然後從cancelledKeys集合中刪除,從keys集合與selectedKeys中刪除,以此來釋放引用,方便gc回收,
  3. 其內調用implDereg方法,將會從channelArray中移除對應的Channel代表的SelectionKeyImpl,調整totalChannels和線程數,從mapkeys中移除SelectionKeyImpl,移除Channel上的SelectionKeyImpl並關閉Channel
  4. 同時還發現該processDeregisterQueue()方法在調用poll方法前後都進行調用,這是確保能夠正確處理在調用poll方法阻塞的這一段時間之內取消的鍵能被及時清理。
  5. 最後,還會判斷這個cancelledKey所代表的channel是否打開和解除註冊,如果關閉並解除註冊,則應該將相應的文件描述符對應佔用的資源給關閉掉。

/**
* sun.nio.ch.SelectorImpl#processDeregisterQueue
* Invoked by selection operations to process the cancelled-key set
*/
protected final void processDeregisterQueue() throws IOException {
assert Thread.holdsLock(this);
assert Thread.holdsLock(publicSelectedKeys);

Set<SelectionKey> cks = cancelledKeys();
synchronized (cks) {
if (!cks.isEmpty()) {
Iterator<SelectionKey> i = cks.iterator();
while (i.hasNext()) {
SelectionKeyImpl ski = (SelectionKeyImpl)i.next();
i.remove();

// remove the key from the selector
implDereg(ski);

selectedKeys.remove(ski);
keys.remove(ski);

// remove from channels key set
deregister(ski);

SelectableChannel ch = ski.channel();
if (!ch.isOpen() && !ch.isRegistered())
((SelChImpl)ch).kill();
}
}
}
}
//sun.nio.ch.WindowsSelectorImpl#implDereg
@Override
protected void implDereg(SelectionKeyImpl ski) {
assert !ski.isValid();
assert Thread.holdsLock(this);

if (fdMap.remove(ski) != null) {
int i = ski.getIndex();
assert (i >= 0);

if (i != totalChannels - 1) {
// Copy end one over it
SelectionKeyImpl endChannel = channelArray[totalChannels-1];
channelArray[i] = endChannel;
endChannel.setIndex(i);
pollWrapper.replaceEntry(pollWrapper, totalChannels-1, pollWrapper, i);
}
ski.setIndex(-1);

channelArray[totalChannels - 1] = null;
totalChannels--;
if (totalChannels != 1 && totalChannels % MAX_SELECTABLE_FDS == 1) {
totalChannels--;
threadsCount--; // The last thread has become redundant.
}
}
}

//sun.nio.ch.SocketChannelImpl#kill
@Override
public void kill() throws IOException {
synchronized (stateLock) {
if (state == ST_KILLPENDING) {
state = ST_KILLED;
nd.close(fd);
}
}
}
//C:/Program Files/Java/jdk-11.0.1/lib/src.zip!/java.base/sun/nio/ch/SocketChannelImpl.java:1126
static {
IOUtil.load();
nd = new SocketDispatcher();
}
//sun.nio.ch.SocketDispatcher#close
void close(FileDescriptor fd) throws IOException {
close0(fd);
}

adjustThreadsCount解讀

  1. 接著我們來看到上面WindowsSelectorImpl#doSelect展示源碼中adjustThreadsCount()方法的調用。
  • 前面有提到如果totalChannels % MAX_SELECTABLE_FDS == 0,則多開一個線程處理selector。這裡就是根據分配的線程數量值來增加或減少線程,其實就是針對操作系統的最大select操作的文件描述符限制對線程個數進行調整。
  • 我們來觀察所建線程做了什麼事情,即觀察SelectThreadrun方法實現。通過觀察其源碼可以看到它首先是while (true),通過startLock.waitForStart(this)來控制該線程是否運行還是等待,運行狀態的話,會進而調用subSelector.poll(index)(這個我們後面內容詳細解讀),
  • 當此線程poll結束,而且相對於當前主線程假如有多條SelectThread子線程的話,當前這條SelectThread線程第一個結束poll的話,就調用finishLock.threadFinished()來通知主線程。在剛新建這個線程並調用其run方法的時候,此時lastRun = 0,在第一次啟動的時候sun.nio.ch.WindowsSelectorImpl.StartLock#runsCounter同樣為0,所以會調用startLock.wait()進而進入等待狀態。

注意: - sun.nio.ch.WindowsSelectorImpl.StartLock同樣會判斷當前其所檢測的線程是否廢棄,廢棄的話就返回true,這樣被檢測線程也就能跳出其內run方法的while循環從而結束線程運行。 - 在調整線程的時候(調用adjustThreadsCount方法)與Selector調用close方法會間接調用到sun.nio.ch.WindowsSelectorImpl#implClose,這兩個方法都會涉及到Selector線程的釋放,即調用sun.nio.ch.WindowsSelectorImpl.SelectThread#makeZombie。 - finishLock.threadFinished()會調用wakeup()方法來通知主線程,這裡,我們可以學到一個細節,如果線程正阻塞在select方法上,就可以調用wakeup方法會使阻塞的選擇操作立即返回,通過Windows的相關實現,原理其實是向pipesink端寫入了一個位元組,source文件描述符就會處於就緒狀態,poll方法會返回,從而導致select方法返回。而在其他solaris或者linux系統上其實採用系統調用pipe來完成管道的創建,相當於直接用了系統的管道。通過wakeup()相關實現還可以看出,調用wakeup會設置interruptTriggered的標誌位,所以連續多次調用wakeup的效果等同於一次調用,不會引起無所謂的bug出現。

//sun.nio.ch.WindowsSelectorImpl#adjustThreadsCount
// After some channels registered/deregistered, the number of required
// helper threads may have changed. Adjust this number.
private void adjustThreadsCount() {
if (threadsCount > threads.size()) {
// More threads needed. Start more threads.
for (int i = threads.size(); i < threadsCount; i++) {
SelectThread newThread = new SelectThread(i);
threads.add(newThread);
newThread.setDaemon(true);
newThread.start();
}
} else if (threadsCount < threads.size()) {
// Some threads become redundant. Remove them from the threads List.
for (int i = threads.size() - 1 ; i >= threadsCount; i--)
threads.remove(i).makeZombie();
}
}

//sun.nio.ch.WindowsSelectorImpl.SelectThread
// Represents a helper thread used for select.
private final class SelectThread extends Thread {
private final int index; // index of this thread
final SubSelector subSelector;
private long lastRun = 0; // last run number
private volatile boolean zombie;
// Creates a new thread
private SelectThread(int i) {
super(null, null, "SelectorHelper", 0, false);
this.index = i;
this.subSelector = new SubSelector(i);
//make sure we wait for next round of poll
this.lastRun = startLock.runsCounter;
}
void makeZombie() {
zombie = true;
}
boolean isZombie() {
return zombie;
}
public void run() {
while (true) { // poll loop
// wait for the start of poll. If this thread has become
// redundant, then exit.
if (startLock.waitForStart(this))
return;
// call poll()
try {
subSelector.poll(index);
} catch (IOException e) {
// Save this exception and let other threads finish.
finishLock.setException(e);
}
// notify main thread, that this thread has finished, and
// wakeup others, if this thread is the first to finish.
finishLock.threadFinished();
}
}
}

// sun.nio.ch.WindowsSelectorImpl.FinishLock#threadFinished
// Each helper thread invokes this function on finishLock, when
// the thread is done with poll().
private synchronized void threadFinished() {
if (threadsToFinish == threads.size()) { // finished poll() first
// if finished first, wakeup others
wakeup();
}
threadsToFinish--;
if (threadsToFinish == 0) // all helper threads finished poll().
notify(); // notify the main thread
}

//sun.nio.ch.WindowsSelectorImpl#wakeup
@Override
public Selector wakeup() {
synchronized (interruptLock) {
if (!interruptTriggered) {
setWakeupSocket();
interruptTriggered = true;
}
}
return this;
}
//sun.nio.ch.WindowsSelectorImpl#setWakeupSocket
// Sets Windows wakeup socket to a signaled state.
private void setWakeupSocket() {
setWakeupSocket0(wakeupSinkFd);
}
private native void setWakeupSocket0(int wakeupSinkFd);

JNIEXPORT void JNICALL
Java_sun_nio_ch_WindowsSelectorImpl_setWakeupSocket0(JNIEnv *env, jclass this,
jint scoutFd)
{
/* Write one byte into the pipe */
const char byte = 1;
send(scoutFd, &byte, 1, 0);
}

subSelector的poll方法解讀

  1. subSelector.poll() 是select的核心,由native函數poll0實現,並把pollWrapper.pollArrayAddress作為參數傳給poll0readFdswriteFdsexceptFds數組用來保存底層select的結果,數組的第一個位置都是存放發生事件的socket的總數,其餘位置存放發生事件的socket句柄fd。 我們通過下面的代碼可知: 這個poll0()會監聽pollWrapper中的FD有沒有數據進出,這裡會造成IO阻塞,直到有數據讀寫事件發生。由於pollWrapper中保存的也有ServerSocketChannelFD,所以只要ClientSocket發一份數據到ServerSocket,那麼poll0()就會返回;又由於pollWrapper中保存的也有pipewrite端的FD,所以只要pipewrite端向FD發一份數據,也會造成poll0()返回;如果這兩種情況都沒有發生,那麼poll0()就一直阻塞,也就是selector.select()會一直阻塞;如果有任何一種情況發生,那麼selector.select()就會返回,所有在SelectThreadrun()裏要用while (true) {},這樣就可以保證在selector接收到數據並處理完後繼續監聽poll();

可以看出,NIO依然是阻塞式的IO,那麼它和BIO的區別究竟在哪呢。 其實它的區別在於阻塞的位置不同,BIO是阻塞在read方法(recvfrom),而NIO阻塞在select方法。那麼這樣做有什麼好處呢。如果單純的改變阻塞的位置,自然是沒有什麼變化的,但epoll等的實現的巧妙之處就在於,它利用回調機制,讓監聽能夠只需要知曉哪些socket上的數據已經準備好了,只需要處理這些線程上面的數據就行了。採用BIO,假設有1000個連接,需要開1000個線程,然後有1000read的位置在阻塞(我們在講解BIO部分已經通過Demo體現),採用NIO編程,只需要1個線程,它利用select的輪詢策略配合epoll的事件機制及紅黑樹數據結構,降低了其內部輪詢的開銷,同時極大的減小了線程上下文切換的開銷。

//sun.nio.ch.WindowsSelectorImpl.SubSelector
private final class SubSelector {
private final int pollArrayIndex; // starting index in pollArray to poll
// These arrays will hold result of native select().
// The first element of each array is the number of selected sockets.
// Other elements are file descriptors of selected sockets.
// 保存發生read的FD
private final int[] readFds = new int [MAX_SELECTABLE_FDS + 1];
// 保存發生write的FD
private final int[] writeFds = new int [MAX_SELECTABLE_FDS + 1];
//保存發生except的FD
private final int[] exceptFds = new int [MAX_SELECTABLE_FDS + 1];

private SubSelector() {
this.pollArrayIndex = 0; // main thread
}

private SubSelector(int threadIndex) { // helper threads
this.pollArrayIndex = (threadIndex + 1) * MAX_SELECTABLE_FDS;
}

private int poll() throws IOException{ // poll for the main thread
return poll0(pollWrapper.pollArrayAddress,
Math.min(totalChannels, MAX_SELECTABLE_FDS),
readFds, writeFds, exceptFds, timeout);
}

private int poll(int index) throws IOException {
// poll for helper threads
return poll0(pollWrapper.pollArrayAddress +
(pollArrayIndex * PollArrayWrapper.SIZE_POLLFD),
Math.min(MAX_SELECTABLE_FDS,
totalChannels - (index + 1) * MAX_SELECTABLE_FDS),
readFds, writeFds, exceptFds, timeout);
}

private native int poll0(long pollAddress, int numfds,
int[] readFds, int[] writeFds, int[] exceptFds, long timeout);
...
}

updateSelectedKeys解讀

  1. 接下來將通過上面WindowsSelectorImpl#doSelect展示源碼中<5> 處的 updateSelectedKeys(action)來處理每個channel準備就緒的信息。
  2. 如果該通道的key尚未在selectedKeys中存在,則將其添加到該集合中。
  3. 如果該通道的key已經存在selectedKeys中,即這個channel存在所支持的ReadyOps就緒操作中必須包含一個這種操作(由(ski.nioReadyOps() & ski.nioInterestOps()) != 0來確定),此時修改其ReadyOps為當前所要進行的操作。而我們之前看到的Consumer<SelectionKey>這個動作也是在此處進行。而由下面源碼可知,先前記錄在ReadyOps中的任何就緒信息在調用此action之前被丟棄掉,直接進行設定。

//sun.nio.ch.WindowsSelectorImpl#updateSelectedKeys
private int updateSelectedKeys(Consumer<SelectionKey> action) {
updateCount++;
int numKeysUpdated = 0;
numKeysUpdated += subSelector.processSelectedKeys(updateCount, action);
for (SelectThread t: threads) {
numKeysUpdated += t.subSelector.processSelectedKeys(updateCount, action);
}
return numKeysUpdated;
}
//sun.nio.ch.SelectorImpl#processReadyEvents
protected final int processReadyEvents(int rOps,
SelectionKeyImpl ski,
Consumer<SelectionKey> action) {
if (action != null) {
ski.translateAndSetReadyOps(rOps);
if ((ski.nioReadyOps() & ski.nioInterestOps()) != 0) {
action.accept(ski);
ensureOpen();
return 1;
}
} else {
assert Thread.holdsLock(publicSelectedKeys);
if (selectedKeys.contains(ski)) {
if (ski.translateAndUpdateReadyOps(rOps)) {
return 1;
}
} else {
ski.translateAndSetReadyOps(rOps);
if ((ski.nioReadyOps() & ski.nioInterestOps()) != 0) {
selectedKeys.add(ski);
return 1;
}
}
}
return 0;
}
//sun.nio.ch.WindowsSelectorImpl.SubSelector#processSelectedKeys
private int processSelectedKeys(long updateCount, Consumer<SelectionKey> action) {
int numKeysUpdated = 0;
numKeysUpdated += processFDSet(updateCount, action, readFds,
Net.POLLIN,
false);
numKeysUpdated += processFDSet(updateCount, action, writeFds,
Net.POLLCONN |
Net.POLLOUT,
false);
numKeysUpdated += processFDSet(updateCount, action, exceptFds,
Net.POLLIN |
Net.POLLCONN |
Net.POLLOUT,
true);
return numKeysUpdated;
}

/**
* sun.nio.ch.WindowsSelectorImpl.SubSelector#processFDSet
* updateCount is used to tell if a key has been counted as updated
* in this select operation.
*
* me.updateCount <= updateCount
*/
private int processFDSet(long updateCount,
Consumer<SelectionKey> action,
int[] fds, int rOps,
boolean isExceptFds)
{
int numKeysUpdated = 0;
for (int i = 1; i <= fds[0]; i++) {
int desc = fds[i];
if (desc == wakeupSourceFd) {
synchronized (interruptLock) {
interruptTriggered = true;
}
continue;
}
MapEntry me = fdMap.get(desc);
// If me is null, the key was deregistered in the previous
// processDeregisterQueue.
if (me == null)
continue;
SelectionKeyImpl sk = me.ski;

// The descriptor may be in the exceptfds set because there is
// OOB data queued to the socket. If there is OOB data then it
// is discarded and the key is not added to the selected set.
if (isExceptFds &&
(sk.channel() instanceof SocketChannelImpl) &&
discardUrgentData(desc))
{
continue;
}
//我們應該關注的
int updated = processReadyEvents(rOps, sk, action);
if (updated > 0 && me.updateCount != updateCount) {
me.updateCount = updateCount;
numKeysUpdated++;
}
}
return numKeysUpdated;
}

至此,關於Selector的內容就暫時告一段落,在下一篇中,我會針對Java NIO Buffer進行相關解讀。

推薦閱讀:

相關文章