學 Java 不知道這 10 件事,根本拿不到高薪!

作爲 Java 書呆子,比起實用技能,我們會對介紹 Java 和 JVM 的概念細節更感興趣。因此我想推薦 Lukas Eder 在 jooq.org 發表的原創作品給大家。

你是從很早開始就一直使用 Java 嗎?那你還記得它的過去嗎?那時,Java 還叫 Oak,OO 還是一個熱門話題,C++ 的 folk 者認爲 Java 是不可能火起來,Java 開發的小應用程序 Applets 還受到關注。

我敢打賭,下面我要介紹的這些事,有一半你都不知道。下面讓我們來深入探索 Java 的神祕之處。

1. 沒有檢查異常這種事情

沒錯!JVM 不會知道這些事情,只有 Java 語句知道。

如今大家都認爲檢查異常是個錯誤。正如 Bruce Eckel 在布拉格 GeeCON 閉幕時所說,Java 之後再沒別的語言檢查異常,甚至 Java 8 在新的 Stream API 中也不再幹這個事情(如果你的 Lambda 使用 IO 和 JDBC,這其實還是有點痛苦)。

如何證實 JVM 並不清楚檢查異常一事?試試下面的代碼:

public class Test { // No throws clause here

public static void main(String[] args) {

doThrow(new SQLException());

} static void doThrow(Exception e) {

Test. doThrow0(e);

} @SuppressWarnings("unchecked") static void doThrow0(Exception e) throws E { throw (E) e;

}

}

這不僅可以編譯通過,它還可以拋出 SQLException。你甚至不需要 Lombok 的 @SneakyThrows 就能辦到。

這篇文章可以看到更詳細的相關內容,或者在 Stack Overflow 上看。

2. 你可以定義僅在返回值有差異的重載函數

這樣的代碼無法編譯,對不?

class Test { Object x() { return "abc"; } String x() { return "123"; }

}

對。 Java 語言不允許兩個方法在同一個類中“等效重載”,而忽略其諸如throws自居或返回類型等的潛在的差異。

查看 Class.getMethod(String, Class…) 的 Javadoc。 其中說明如下:

請注意,類中可能有多個匹配方法,因爲 Java 語言禁止在一個類聲明具有相同簽名但返回類型不同的多個方法,但 Java 虛擬機並不是如此。虛擬機中增加的靈活性可以用於實現各種語言特徵。例如,可以用橋接方法實現協變參返回; 橋接方法和被重寫的方法將具有相同的簽名但擁有不同的返回類型。

哇哦,有道理。實際上下面的代碼暗藏着很多事情:

abstract class Parent<T> { abstract T x();

}class Child extends Parent<String> { @Override

String x() { return "abc"; }

}

來看看爲 Child 生成的字節碼:

// Method descriptor #15 ()Ljava/lang/String;// Stack: 1, Locals: 1java.lang.String x(); 0 ldc [16] 2 areturn

Line numbers:

[pc: 0, line: 7]

Local variable table:

[pc: 0, pc: 3] local: this index: 0 type: Child// Method descriptor #18 ()Ljava/lang/Object;// Stack: 1, Locals: 1bridge synthetic java.lang.Object x(); 0 aload_0 [this] 1 invokevirtual Child.x() : java.lang.String [19] 4 areturn

Line numbers:

[pc: 0, line: 1]

其實在字節碼中 T 真的只是 Object。這很好理解。

合成的橋方法實際是由編譯器生成的,因爲 Parent.x() 簽名中的返回類型在實際調用的時候正好是 Object。在沒有這種橋方法的情況下引入泛型將無法在二進制下兼容。因此,改變 JVM 來允許這個特性所帶來的痛苦會更小(副作用是允許協變凌駕於一切之上) 很聰明,不是嗎?

3. 所有這些都是二維數組!

class Test { int[][] a() { return new int[0][]; } int[] b() [] { return new int[0][]; } int c() [][] { return new int[0][]; }

}

是的,這是真的。即使你的大腦解析器不能立刻理解上面方法的返回類型,但其實他們都是一樣的!類似的還有下面這些代碼片段:

class Test { int[][] a = {{}}; int[] b[] = {{}}; int c[][] = {{}};

}

你認爲這很瘋狂?想象在上面使用 JSR-308 / Java 8 類型註解 。語法的可能性指數激增!

@Target(ElementType.TYPE_USE)@interface Crazy {}class Test { @Crazy int[][] a1 = {{}}; int @Crazy [][] a2 = {{}}; int[] @Crazy [] a3 = {{}}; @Crazy int[] b1[] = {{}}; int @Crazy [] b2[] = {{}}; int[] b3 @Crazy [] = {{}}; @Crazy int c1[][] = {{}}; int c2 @Crazy [][] = {{}}; int c3[] @Crazy [] = {{}};

}

類型註解。看起來很神祕,其實並不難理解。

或者換句話說:

當我做最近一次提交的時候是在我4周的假期之前。

學 Java 不知道這 10 件事,根本拿不到高薪!

對你來說,上面的內容在你的實際使用中找到了吧。

4. 條件表達式的特殊情況

可能大多數人會認爲:

Object o1 = true ? new Integer(1) : new Double(2.0);

是否等價於:

Object o2;if (true)

o2 = new Integer(1);else o2 = new Double(2.0);

然而,事實並非如此。我們來測試一下就知道了。

System.out.println(o1);System.out.println(o2);

輸出結果:

1.01

由此可見,三目條件運算符會在有需要的情況下,對操作數進行類型提升。注意,是隻在有需要時才進行;否則,代碼可能會拋出 NullPointerException 空引用異常:

Integer i = new Integer(1);if (i.equals(1))

i = null;

Double d = new Double(2.0);Object o = true ? i : d; // NullPointerException!System.out.println(o);

5. 你還沒搞懂複合賦值運算符

很奇怪嗎?來看看下面這兩行代碼:

i += j;

i = i + j;

直觀看來它們等價,是嗎?但可其實它們並不等價!JLS 解釋如下:

E1 op= E2 形式的複合賦值表達式等價於 E1 = (T)((E1) op (E2)),這裏 T 是 E1 的類型,E1 只計算一次。

非常好,我想引用 Peter Lawrey Stack Overflow 上的對這個問題的回答:

使用 *= 或 /= 來進行計算的例子

byte b = 10;

b *= 5.7;

System.out.println(b); // prints 57

或者

byte b = 100;

b /= 2.5;

System.out.println(b); // prints 40

或者

char ch = '0';

ch *= 1.1;

System.out.println(ch); // prints '4'

或者

char ch = 'A';

ch *= 1.5;

System.out.println(ch); // prints 'a'

現在看到它的作用了嗎?我會在應用程序中對字符串進行乘法計算。因爲,你懂的…

6. 隨機整數

現在有一個更難的謎題。不要去看答案,看看你能不能自己找到答案。如果運行下面的程序:

for (int i = 0; i < 10; i++) {

System.out.println((Integer) i);

}

… “有時候”,我會得到下面的輸出:

92

221

45

48

236

183

39

193

33

84

這怎麼可能??

. spoiler… 繼續解答…

好了,答案在這裏 (https://blog.jooq.org/2013/10/17/add-some-entropy-to-your-jvm/),這必須通過反射重寫 JDK 的 Integer 緩存,然後使用自動裝箱和拆箱。不要在家幹這種事情!或者,我們應該換種方式進行此類操作。

7. GOTO

這是我的最愛之一。Java也有GOTO!輸入下試試……

int goto = 1;

將輸出:

Test.java:44: error: expectedint goto = 1;

^

這是因爲goto是一個未使用的關鍵字, 僅僅是爲了以防萬一……

但這不是最令人興奮的部分。令人興奮的部分是你可以使用 break、continue 和標記塊來實現 goto 功能:

向前跳:

label: {

// do stuff

if (check) break label;

// do more stuff

}

在字節碼中格式如下:

2 iload_1 [check]3 ifeq 6 // Jumping forward6 ..

向後跳:

label: do {

// do stuff

if (check) continue label;

// do more stuff

break label;

} while(true);

在字節碼中格式如下:

2 iload_1 [check]3 ifeq 96 goto 2 // Jumping backward9 ..

8. Java 有類型別名

其它語言 (比如 Ceylon) 中,我們很容易爲類型定義別名:

interface People => Set;

這裏產生了 People 類型,使用它就跟使用 Set 一樣:

People? p1 = null;

Set? p2 = p1;

People? p3 = p2;

Java 中我們不能在頂層作用域定義類型別名,但是我們可以在類或方法作用域中幹這個事情。假如我們不喜歡 Integer、Long 等等名稱,而是想用更簡短的 I 和 L,很簡單:

class Test<I extends Integer> {

void x(I i, L l) {

System.out.println(

i.intValue() + ", " +

l.longValue()

);

}

}

在上面的程序中,Test 類作用域內 Integer 被賦予 I 這樣的 “別名”,類似地,Long 在 x() 方法中被賦予 L 這樣的 “別名”。之後我們可以這樣調用方法:

new Test().x(1, 2L);

這種技術當然不太會受重視。這種情況下,Integer 和 Long 都是 final 類型,也就是說,I 和 L 是事實上的別名(基本上賦值兼容性只需要考慮一種可能性)。如果我們使用非 final 類型 (比如 Object),那就是一般的泛型。

這些把戲已經玩夠了。現在來看看真正了不起的東西!

9. 某些類型的關係並不確定!

好了,這會很引人注目,先來杯咖啡提提神。思考一下下面兩個類型:

// A helper type. You could also just use Listinterface Type<T> {}class C implements Type<Type super C>> {}class D<P> implements Type<Type super D<D<P>>>> {}

現在告訴我,類型 C 和 D 到底是什麼?

它們存在遞歸,是一種類似 java.lang.Enum (但有略微不同)的遞歸方式。看看:

public abstract class Enum<E extends Enum<E>> { ... }

在上面的描述中,enum 實際上只是單純的語法糖:

// Thisenum MyEnum {}// Is really just sugar for thisclass MyEnum extends Enum<MyEnum> { ... }

認識到這一點之後我們回過頭來看看前面提到的兩個類型,下面的代碼會編譯成什麼樣?

class Test {

Type< ? super C> c = new C();

Type< ? super D> d = new D();

}

非常難回答的問題,不過 Ross Tate 已經回答了。這個問題的答案是不可判定的:

C 是 Type super C> 的子類?

Step 0) C super C>

Step 1) Typesuper C>>

Step 2) C (checking wildcard ? super C)

Step . . . (cycle forever)

然後:

D 是 Type super D> 的子類?

Step 0) D : Type super C>

Step 1) Type super D>>> : Type super D>

Step 2) D : Type super D>>

Step 3) Type super C>> : Type super C>

Step 4) D> : Type super D>>

Step . . . (expand forever)

在 Eclipse 中試着編譯一下,它會崩潰! (不用擔心,我提交了 BUG 報告)

讓這個事情沉下去…

Java 中某些類型的關係是不明確的!

10. 類型交集

Java 有一個非常奇怪的特性叫類型交集。你可以申明某個(泛型)類型,而它實際上是兩個類型的交集,比如:

class Test<T extends Serializable & Cloneable> {

}

綁定到 Test 類型實例的泛型類型參數 T 必須實現 Serializable 和 Cloneable。比如,String 就不符合要求,但 Dete 滿足:

// Doesn't compileTest s = null;// CompilesTest d = null;

這個特性已經在 Java 8 中使用。這很有用嗎?幾乎沒用,但是如果你希望某個 Lambda 表達式是這種類型,還真沒別的辦法。假設你的方法有這種瘋狂的類型約束:

void execute(T t) {}

你想通過執行它得到一個可以序列化 (Serializable) 的 Runnable 對象。Lambda 和序列化也有點奇怪。

Lambda 可以序列經:

如果 Lambda 的目標類型和參數類型都可以序列化,那麼你可以序列化這個 Lambda

但是即使是這樣,他們都不能自動實現 Serializable 標記接口。你必須強制轉換類型。但是當你只扔給 Serializable 時…

execute((Serializable) (() -> {}));

… 那麼 lambda 將不再是 Runnable 的。

因此要把它轉換爲兩種類型:

execute((Runnable & Serializable) (() -> {}));

結論

一句話總結這篇文章就是:

Java 恰好是一種看起來神祕的語言,其實不然。

相关文章