作者:CoderFocus;
原文:www.cnblogs.com/songwenjie/p/9410009.html


本文主要討論MySQL索引的部分知識。將會從MySQL索引基礎、索引優化實戰和數據庫索引背後的數據結構三部分相關內容,下面一一展開。

一、MySQL——索引基礎

首先,我們將從索引基礎開始介紹一下什麼是索引,分析索引的幾種類型,並探討一下如何創建索引以及索引設計的基本原則。

此部分用於測試索引創建的user表的結構如下:


講真,MySQL索引優化看這篇文章就夠了


1、什麼是索引

“索引(在MySQL中也叫“鍵key”)是存儲引擎快速找到記錄的一種數據結構。”

——《高性能MySQL》

我們需要知道索引其實是一種數據結構,其功能是幫助我們快速匹配查找到需要的數據行,是數據庫性能優化最常用的工具之一。其作用相當於超市裏的導購員、書本里的目錄。

2、索引類型

可以使用SHOW INDEX FROM table_name;查看索引詳情:


講真,MySQL索引優化看這篇文章就夠了


主鍵索引 PRIMARY KEY

它是一種特殊的唯一索引,不允許有空值。一般是在建表的時候同時創建主鍵索引。注意:一個表只能有一個主鍵。


講真,MySQL索引優化看這篇文章就夠了


唯一索引 UNIQUE

唯一索引列的值必須唯一,但允許有空值。如果是組合索引,則列值的組合必須唯一。

可以通過ALTER TABLE table_name ADD UNIQUE (column);創建唯一索引:


講真,MySQL索引優化看這篇文章就夠了


講真,MySQL索引優化看這篇文章就夠了


可以通過ALTER TABLE table_name ADD UNIQUE (column1,column2);創建唯一組合索引:


講真,MySQL索引優化看這篇文章就夠了


講真,MySQL索引優化看這篇文章就夠了


普通索引 INDEX

這是最基本的索引,它沒有任何限制。

可以通過ALTER TABLE table_name ADD INDEX index_name (column);創建普通索引:


講真,MySQL索引優化看這篇文章就夠了


講真,MySQL索引優化看這篇文章就夠了


組合索引 INDEX

即一個索引包含多個列,多用於避免回表查詢。

可以通過ALTER TABLE table_name ADD INDEX index_name(column1,column2, column3);創建組合索引:


講真,MySQL索引優化看這篇文章就夠了


講真,MySQL索引優化看這篇文章就夠了


全文索引 FULLTEXT

也稱全文檢索,是目前搜索引擎使用的一種關鍵技術。

可以通過ALTER TABLE table_name ADD FULLTEXT (column);創建全文索引:


講真,MySQL索引優化看這篇文章就夠了


講真,MySQL索引優化看這篇文章就夠了


索引一經創建不能修改,如果要修改索引,只能刪除重建。可以使用DROP INDEX index_name ON table_name;刪除索引。

3、索引設計的原則

  • 適合索引的列是出現在where子句中的列,或者連接子句中指定的列;
  • 基數較小的類,索引效果較差,沒有必要在此列建立索引;
  • 使用短索引,如果對長字符串列進行索引,應該指定一個前綴長度,這樣能夠節省大量索引空間;
  • 不要過度索引。索引需要額外的磁盤空間,並降低寫操作的性能。在修改表內容的時候,索引會進行更新甚至重構,索引列越多,這個時間就會越長。所以只保持需要的索引有利於查詢即可。

二、MySQL——索引優化實戰

上面我們介紹了索引的基本內容,這部分我們介紹索引優化實戰。在介紹索引優化實戰之前,首先要介紹兩個與索引相關的重要概念,這兩個概念對於索引優化至關重要。

此部分用於測試的user表結構:


講真,MySQL索引優化看這篇文章就夠了


1、索引相關的重要概念

基數

單個列唯一鍵(distict_keys)的數量叫做基數。

SELECT COUNT(DISTINCT name),COUNT(DISTINCT gender) FROM user;


講真,MySQL索引優化看這篇文章就夠了


user表的總行數是5,gender列的基數是2,說明gender列裏面有大量重複值,name列的基數等於總行數,說明name列沒有重複值,相當於主鍵。

返回數據的比例:

user表中共有5條數據:

SELECT * FROM user;


講真,MySQL索引優化看這篇文章就夠了


查詢滿足性別爲0(男)的記錄數:


講真,MySQL索引優化看這篇文章就夠了


那麼返回記錄的比例數是:


講真,MySQL索引優化看這篇文章就夠了


同理,查詢name爲'swj'的記錄數:


講真,MySQL索引優化看這篇文章就夠了


返回記錄的比例數是:


講真,MySQL索引優化看這篇文章就夠了


現在問題來了,假設name、gender列都有索引,那麼SELECT * FROM user WHERE gender = 0; SELECT * FROM user WHERE name = 'swj';都能命中索引嗎?

user表的索引詳情:


講真,MySQL索引優化看這篇文章就夠了


SELECT * FROM user WHERE gender = 0;沒有命中索引,注意filtered的值就是上面我們計算的返回記錄的比例數。


講真,MySQL索引優化看這篇文章就夠了


SELECT * FROM user WHERE name = 'swj';命中了索引index_name,因爲走索引直接就能找到要查詢的記錄,所以filtered的值爲100。

講真,MySQL索引優化看這篇文章就夠了

因此,返回表中30%內的數據會走索引,返回超過30%數據就使用全表掃描。當然這個結論太絕對了,也並不是絕對的30%,只是一個大概的範圍。

回表

當對一個列創建索引之後,索引會包含該列的鍵值及鍵值對應行所在的rowid。通過索引中記錄的rowid訪問表中的數據就叫回表。回表次數太多會嚴重影響SQL性能,如果回表次數太多,就不應該走索引掃描,應該直接走全表掃描。

EXPLAIN命令結果中的Using Index意味着不會回表,通過索引就可以獲得主要的數據。Using Where則意味着需要回表取數據。

2、索引優化實戰

有些時候雖然數據庫有索引,但是並不被優化器選擇使用。

我們可以通過SHOW STATUS LIKE 'Handler_read%';查看索引的使用情況:


講真,MySQL索引優化看這篇文章就夠了


  • Handler_read_key:如果索引正在工作,Handler_read_key的值將很高。
  • Handler_read_rnd_next:數據文件中讀取下一行的請求數,如果正在進行大量的表掃描,值將較高,則說明索引利用不理想。

索引優化規則:

  • 如果MySQL估計使用索引比全表掃描還慢,則不會使用索引。

返回數據的比例是重要的指標,比例越低越容易命中索引。記住這個範圍值——30%,後面所講的內容都是建立在返回數據的比例在30%以內的基礎上。

  • 前導模糊查詢不能命中索引。

name列創建普通索引:


講真,MySQL索引優化看這篇文章就夠了


前導模糊查詢不能命中索引:

EXPLAIN SELECT * FROM user WHERE name LIKE '%s%';


講真,MySQL索引優化看這篇文章就夠了


非前導模糊查詢則可以使用索引,可優化爲使用非前導模糊查詢:

EXPLAIN SELECT * FROM user WHERE name LIKE 's%';

講真,MySQL索引優化看這篇文章就夠了

  • 數據類型出現隱式轉換的時候不會命中索引,特別是當列類型是字符串,一定要將字符常量值用引號引起來。

EXPLAIN SELECT * FROM user WHERE name=1;


講真,MySQL索引優化看這篇文章就夠了


EXPLAIN SELECT * FROM user WHERE name='1';


講真,MySQL索引優化看這篇文章就夠了


  • 複合索引的情況下,查詢條件不包含索引列最左邊部分(不滿足最左原則),不會命中符合索引。

name,age,status列創建複合索引:

ALTER TABLE user ADD INDEX index_name (name,age,status);


講真,MySQL索引優化看這篇文章就夠了


user表索引詳情:

SHOW INDEX FROM user;


講真,MySQL索引優化看這篇文章就夠了


根據最左原則,可以命中複合索引index_name:

EXPLAIN SELECT * FROM user WHERE name='swj' AND status=1;


講真,MySQL索引優化看這篇文章就夠了


注意,最左原則並不是說是查詢條件的順序:

EXPLAIN SELECT * FROM user WHERE status=1 AND name='swj';


講真,MySQL索引優化看這篇文章就夠了


而是查詢條件中是否包含索引最左列字段:

EXPLAIN SELECT * FROM user WHERE status=2 ;


講真,MySQL索引優化看這篇文章就夠了


  • union、in、or都能夠命中索引,建議使用in。

union:

EXPLAIN SELECT*FROM user WHERE status=1

UNION ALL

SELECT*FROM user WHERE status = 2;


講真,MySQL索引優化看這篇文章就夠了


in:

EXPLAIN SELECT * FROM user WHERE status IN (1,2);


講真,MySQL索引優化看這篇文章就夠了


or:

EXPLAIN SELECT*FROM user WHERE status=1OR status=2;


講真,MySQL索引優化看這篇文章就夠了


查詢的CPU消耗:or>in>union

  • 用or分割開的條件,如果or前的條件中列有索引,而後面的列中沒有索引,那麼涉及到的索引都不會被用到。

EXPLAIN SELECT * FROM payment WHERE customer_id = 203 OR amount = 3.96;


講真,MySQL索引優化看這篇文章就夠了


因爲or後面的條件列中沒有索引,那麼後面的查詢肯定要走全表掃描,在存在全表掃描的情況下,就沒有必要多一次索引掃描增加IO訪問。

  • 負向條件查詢不能使用索引,可以優化爲in查詢。

負向條件有:!=、<>、not in、not exists、not like等。

status列創建索引:

ALTER TABLE user ADD INDEX index_status (status);


講真,MySQL索引優化看這篇文章就夠了


user表索引詳情:

SHOW INDEX FROM user;


講真,MySQL索引優化看這篇文章就夠了


負向條件不能命中緩存:

EXPLAIN SELECT * FROM user WHERE status !=1 AND status != 2;


講真,MySQL索引優化看這篇文章就夠了


可以優化爲in查詢,但是前提是區分度要高,返回數據的比例在30%以內:

EXPLAIN SELECT * FROM user WHERE status IN (0,3,4);


講真,MySQL索引優化看這篇文章就夠了


  • 範圍條件查詢可以命中索引。範圍條件有:、>=、between等。

status,age列分別創建索引:

ALTER TABLE user ADD INDEX index_status (status);


講真,MySQL索引優化看這篇文章就夠了


ALTER TABLE user ADD INDEX index_age (age);


講真,MySQL索引優化看這篇文章就夠了


user表索引詳情:

SHOW INDEX FROM user;


講真,MySQL索引優化看這篇文章就夠了


範圍條件查詢可以命中索引:

EXPLAIN SELECT * FROM user WHERE status>5;


講真,MySQL索引優化看這篇文章就夠了


範圍列可以用到索引(聯合索引必須是最左前綴),但是範圍列後面的列無法用到索引,索引最多用於一個範圍列,如果查詢條件中有兩個範圍列則無法全用到索引:

EXPLAIN SELECT * FROM user WHERE status>5 AND age<24;


講真,MySQL索引優化看這篇文章就夠了


如果是範圍查詢和等值查詢同時存在,優先匹配等值查詢列的索引:

EXPLAIN SELECT * FROM user WHERE status>5 AND age=24;


講真,MySQL索引優化看這篇文章就夠了


  • 數據庫執行計算不會命中索引。

EXPLAIN SELECT * FROM user WHERE age>24;


講真,MySQL索引優化看這篇文章就夠了


EXPLAIN SELECT * FROM user WHERE age+1>24;


講真,MySQL索引優化看這篇文章就夠了


計算邏輯應該儘量放到業務層處理,節省數據庫的CPU的同時最大限度的命中索引。

  • 利用覆蓋索引進行查詢,避免回表。

被查詢的列,數據能從索引中取得,而不用通過行定位符row-locator再到row上獲取,即“被查詢列要被所建的索引覆蓋”,這能夠加速查詢速度。

user表的索引詳情:


講真,MySQL索引優化看這篇文章就夠了


因爲status字段是索引列,所以直接從索引中就可以獲取值,不必回表查詢:

Using Index代表從索引中查詢:

EXPLAIN SELECT status FROM user where status=1;


講真,MySQL索引優化看這篇文章就夠了


當查詢其他列時,就需要回表查詢,這也是爲什麼要避免SELECT*的原因之一:

EXPLAIN SELECT * FROM user where status=1;


講真,MySQL索引優化看這篇文章就夠了


  • 建立索引的列,不允許爲null。

單列索引不存null值,複合索引不存全爲null的值,如果列允許爲null,可能會得到“不符合預期”的結果集,所以,請使用not null約束以及默認值。

remark列建立索引:

ALTER TABLE user ADD INDEX index_remark (remark);


講真,MySQL索引優化看這篇文章就夠了


IS NULL可以命中索引:

EXPLAIN SELECT * FROM user WHERE remark IS NULL;


講真,MySQL索引優化看這篇文章就夠了


IS NOT NULL不能命中索引:

EXPLAIN SELECT * FROM user WHERE remark IS NOT NULL;


講真,MySQL索引優化看這篇文章就夠了


雖然IS NULL可以命中索引,但是NULL本身就不是一種好的數據庫設計,應該使用NOT NULL約束以及默認值。

  • 更新十分頻繁的字段上不宜建立索引:因爲更新操作會變更B+樹,重建索引。這個過程是十分消耗數據庫性能的。
  • 區分度不大的字段上不宜建立索引:類似於性別這種區分度不大的字段,建立索引的意義不大。因爲不能有效過濾數據,性能和全表掃描相當。另外返回數據的比例在30%以外的情況下,優化器不會選擇使用索引。
  • 業務上具有唯一特性的字段,即使是多個字段的組合,也必須建成唯一索引。雖然唯一索引會影響insert速度,但是對於查詢的速度提升是非常明顯的。另外,即使在應用層做了非常完善的校驗控制,只要沒有唯一索引,在併發的情況下,依然有髒數據產生。
  • 多表關聯時,要保證關聯字段上一定有索引。
  • 創建索引時避免以下錯誤觀念:索引越多越好,認爲一個查詢就需要建一個索引;寧缺勿濫,認爲索引會消耗空間、嚴重拖慢更新和新增速度;抵制唯一索引,認爲業務的唯一性一律需要在應用層通過“先查後插”方式解決;過早優化,在不瞭解系統的情況下就開始優化。

3、小結

對於自己編寫的SQL查詢語句,要儘量使用EXPLAIN命令分析一下,做一個對SQL性能有追求的程序員。衡量一個程序員是否靠譜,SQL能力是一個重要的指標。作爲後端程序員,深以爲然。

三、數據庫索引背後的數據結構

第一部分開頭我們簡單提到,索引是存儲引擎快速找到記錄的一種數據結構。進一步說,在數據庫系統裏,這種數據結構要滿足特定查找算法,即這些數據結構以某種方式引用(指向)數據,這樣就可以在這些數據結構上實現高級查找算法。


講真,MySQL索引優化看這篇文章就夠了


1、B-Tree

B-Tree是一種平衡的多路查找(又稱排序)樹,在文件系統中和數據庫系統中有所應用,主要用作文件的索引。其中的B就表示平衡(Balance) 。


講真,MySQL索引優化看這篇文章就夠了


B-Tree的特性

爲了描述B-Tree,首先定義一條數據記錄爲一個二元組[key, data],key爲記錄的鍵值,對於不同數據記錄,key是互不相同的;data爲數據記錄除key外的數據。那麼B-Tree是滿足下列條件的數據結構:

d爲大於1的一個正整數,稱爲B-Tree的度:


講真,MySQL索引優化看這篇文章就夠了


h爲一個正整數,稱爲B-Tree的高度:


講真,MySQL索引優化看這篇文章就夠了


key和指針互相間隔,節點兩端是指針:


講真,MySQL索引優化看這篇文章就夠了


一個節點中的key從左到右非遞減排列:


講真,MySQL索引優化看這篇文章就夠了


所有節點組成樹結構。

每個指針要麼爲null,要麼指向另外一個節點;每個非葉子節點由n-1個key和n個指針組成,其中d<=n<=2d:


講真,MySQL索引優化看這篇文章就夠了


每個葉子節點最少包含一個key和兩個指針,最多包含2d-1個key和2d個指針,葉節點的指針均爲null:


講真,MySQL索引優化看這篇文章就夠了


所有葉節點具有相同的深度,等於樹高h。

如果某個指針在節點node最左邊且不爲null,則其指向節點的所有key小於key1,其中key1爲node的第一個key的值:


講真,MySQL索引優化看這篇文章就夠了


如果某個指針在節點node最右邊且不爲null,則其指向節點的所有key大於keym,其中keym爲node的最後一個key的值:


講真,MySQL索引優化看這篇文章就夠了


如果某個指針在節點node的左右相鄰key分別是keyi和keyi+1且不爲null,則其指向節點的所有key小於keyi+1且大於keyi:


講真,MySQL索引優化看這篇文章就夠了


B-Tree查找數據

B-Tree是一個非常有效率的索引數據結構。這主要得益於B-Tree的度可以非常大,高度會變的非常小,只需要二分幾次就可以找到數據。例如一個度爲d的B-Tree,設其索引N個key,則其樹高h的上限爲logd((N+1)/2)),檢索一個key,其查找節點個數的漸進複雜度爲O(logdN)。

在B-Tree中按key檢索數據的算法非常直觀:

  • 首先從根節點進行二分查找,如果找到則返回對應節點的data;
  • 否則對相應區間的指針指向的節點遞歸進行查找,如果找到則返回對應節點的data;
  • 如果找不到,則重複上述“對相應區間的指針指向的節點遞歸進行查找”,直到找到節點或找到null指針,前者查找成功,後者查找失敗。

2、B+Tree

B+Tree是B-Tree的一種變種。一般來說,B+Tree比B-Tree更適合實現外存儲索引結構,具體原因與外存儲器原理及計算機存取原理有關,將在以後討論。


講真,MySQL索引優化看這篇文章就夠了


B+Tree的特性

區別於B-Tree:

  • 每個節點的指針上限爲2d而不是2d+1;
  • 內節點不存儲data,只存儲key;葉子節點不存儲指針。

3、帶有順序訪問指針的B+Tree

一般在數據庫系統或者文件系統中,並不是直接使用B+Tree作爲索引數據結構的,而是在B+Tree的基礎上做了優化,增加了順序訪問指針,提升了區間查詢的性能。


講真,MySQL索引優化看這篇文章就夠了


如上圖所示,在B+Tree的每個葉子節點增加一個指向相鄰葉子節點的指針,就形成了帶有順序訪問指針的B+Tree。

例如要查詢18到30之間的數據記錄,只要先找到18,然後順着順序訪問指針就可以訪問到所有的數據節點。這樣就提升了區間查詢的性能。數據庫的索引全掃描index和索引範圍掃描range就是基於此實現的。

四、總結

索引能夠提高系統的性能,設計有效的索引是十分重要的。希望看完的小夥伴能夠有所收穫,如有更多建議,也歡迎留言與我交流!

參考

  • 《深入淺出MySQL》
  • 《MySQL索引背後的數據結構及算法原理》
  • http://blog.codinglabs.org/articles/theory-of-mysql-index.html
相关文章