雪花台湾

[優化]Levenberg-Marquardt 最小二乘優化

LM(Levenberg-Marquardt)演算法屬於信賴域法,將變數行走的長度 控制在一定的信賴域之內,保證泰勒展開有很好的近似效果。

LM演算法使用了一種帶阻尼的高斯-牛頓方法。

1.理論

最小二乘問題

一階泰勒展開:

去掉高階項,帶入到 :

阻尼法的的思想是再加入一個阻尼項

對上式求偏導數,並令為0.

阻尼參數 的作用有

1. 對與 正定,保證了 是梯度下降的方向。

2. 當 較大時: ,其實就是梯度、最速下降法,當離最終結果較遠的時候,很好。

3. 當 較小時,方法接近與高斯牛頓,當離最終結果很近時,可以獲得二次收斂速度,很好。

看來, 的選取很重要。初始時,取

其他情況,利用cost增益來確定:

迭代終止條件

1.一階導數為0: ,使用 , 是設定的終止條件;

2.x變化步距離足夠小, ;3.超過最大迭代次數。

LM演算法的步驟為

begin

while(not found) and k < kmax if( found = true; else

if( ) {判斷能不能接收這一步}

else

end

2. 演算法實現

問題:(高斯牛頓同款問題)非線性方程: ,給定 組觀測數據 ,求係數 .

分析:令 ,N組數據可以組成一個大的非線性方程組

我們可以構建一個最小二乘問題:

.

要求解這個問題,根據推導部分可知,需要求解雅克比。

使用推導部分所述的步驟就可以進行解算。代碼實現:

ydsf16/LevenbergMarquardt?

github.com

/**
* This file is part of LevenbergMarquardt Solver.
*
* Copyright (C) 2018-2020 Dongsheng Yang <ydsf16@buaa.edu.cn> (Beihang University)
* For more information see <https://github.com/ydsf16/LevenbergMarquardt>
*
* LevenbergMarquardt is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LevenbergMarquardt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LevenbergMarquardt. If not, see <http://www.gnu.org/licenses/>.
*/

#include <iostream>
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense>
#include <opencv2/opencv.hpp>
#include <eigen3/Eigen/Cholesky>
#include <chrono>

/* 計時類 */
class Runtimer{
public:
inline void start()
{
t_s_ = std::chrono::steady_clock::now();
}

inline void stop()
{
t_e_ = std::chrono::steady_clock::now();
}

inline double duration()
{
return std::chrono::duration_cast<std::chrono::duration<double>>(t_e_ - t_s_).count() * 1000.0;
}

private:
std::chrono::steady_clock::time_point t_s_; //start time ponit
std::chrono::steady_clock::time_point t_e_; //stop time point
};

/* 優化方程 */
class LevenbergMarquardt{
public:
LevenbergMarquardt(double* a, double* b, double* c):
a_(a), b_(b), c_(c)
{
epsilon_1_ = 1e-6;
epsilon_2_ = 1e-6;
max_iter_ = 50;
is_out_ = true;
}

void setParameters(double epsilon_1, double epsilon_2, int max_iter, bool is_out)
{
epsilon_1_ = epsilon_1;
epsilon_2_ = epsilon_2;
max_iter_ = max_iter;
is_out_ = is_out;
}

void addObservation(const double& x, const double& y)
{
obs_.push_back(Eigen::Vector2d(x, y));
}

void calcJ_fx()
{
J_ .resize(obs_.size(), 3);
fx_.resize(obs_.size(), 1);

for ( size_t i = 0; i < obs_.size(); i ++)
{
const Eigen::Vector2d& ob = obs_.at(i);
const double& x = ob(0);
const double& y = ob(1);
double j1 = -x*x*exp(*a_ * x*x + *b_*x + *c_);
double j2 = -x*exp(*a_ * x*x + *b_*x + *c_);
double j3 = -exp(*a_ * x*x + *b_*x + *c_);
J_(i, 0 ) = j1;
J_(i, 1) = j2;
J_(i, 2) = j3;
fx_(i, 0) = y - exp( *a_ *x*x + *b_*x +*c_);
}
}

void calcH_g()
{
H_ = J_.transpose() * J_;
g_ = -J_.transpose() * fx_;
}

double getCost()
{
Eigen::MatrixXd cost= fx_.transpose() * fx_;
return cost(0,0);
}

double F(double a, double b, double c)
{
Eigen::MatrixXd fx;
fx.resize(obs_.size(), 1);

for ( size_t i = 0; i < obs_.size(); i ++)
{
const Eigen::Vector2d& ob = obs_.at(i);
const double& x = ob(0);
const double& y = ob(1);
fx(i, 0) = y - exp( a *x*x + b*x +c);
}
Eigen::MatrixXd F = 0.5 * fx.transpose() * fx;
return F(0,0);
}

double L0_L( Eigen::Vector3d& h)
{
Eigen::MatrixXd L = -h.transpose() * J_.transpose() * fx_ - 0.5 * h.transpose() * J_.transpose() * J_ * h;
return L(0,0);
}

void solve()
{
int k = 0;
double nu = 2.0;
calcJ_fx();
calcH_g();
bool found = ( g_.lpNorm<Eigen::Infinity>() < epsilon_1_ );

std::vector<double> A;
A.push_back( H_(0, 0) );
A.push_back( H_(1, 1) );
A.push_back( H_(2,2) );
auto max_p = std::max_element(A.begin(), A.end());
double mu = *max_p;

double sumt =0;

while ( !found && k < max_iter_)
{
Runtimer t;
t.start();

k = k +1;
Eigen::Matrix3d G = H_ + mu * Eigen::Matrix3d::Identity();
Eigen::Vector3d h = G.ldlt().solve(g_);

if( h.norm() <= epsilon_2_ * ( sqrt(*a_**a_ + *b_**b_ + *c_**c_ ) +epsilon_2_ ) )
found = true;
else
{
double na = *a_ + h(0);
double nb = *b_ + h(1);
double nc = *c_ + h(2);

double rho =( F(*a_, *b_, *c_) - F(na, nb, nc) ) / L0_L(h);

if( rho > 0)
{
*a_ = na;
*b_ = nb;
*c_ = nc;
calcJ_fx();
calcH_g();

found = ( g_.lpNorm<Eigen::Infinity>() < epsilon_1_ );
mu = mu * std::max<double>(0.33, 1 - std::pow(2*rho -1, 3));
nu = 2.0;
}
else
{
mu = mu * nu;
nu = 2*nu;
}// if rho > 0
}// if step is too small

t.stop();
if( is_out_ )
{
std::cout << "Iter: " << std::left <<std::setw(3) << k << " Result: "<< std::left <<std::setw(10) << *a_ << " " << std::left <<std::setw(10) << *b_ << " " << std::left <<std::setw(10) << *c_ <<
" step: " << std::left <<std::setw(14) << h.norm() << " cost: "<< std::left <<std::setw(14) << getCost() << " time: " << std::left <<std::setw(14) << t.duration() <<
" total_time: "<< std::left <<std::setw(14) << (sumt += t.duration()) << std::endl;
}
} // while

if( found == true)
std::cout << "
Converged

";
else
std::cout << "
Diverged

";

}//function

Eigen::MatrixXd fx_;
Eigen::MatrixXd J_; // 雅克比矩陣
Eigen::Matrix3d H_; // H矩陣
Eigen::Vector3d g_;

std::vector< Eigen::Vector2d> obs_; // 觀測

/* 要求的三個參數 */
double* a_, *b_, *c_;

/* parameters */
double epsilon_1_, epsilon_2_;
int max_iter_;
bool is_out_;
};//class LevenbergMarquardt
int main(int argc, char **argv) {
const double aa = 0.1, bb = 0.5, cc = 2; // 實際方程的參數
double a =0.0, b=0.0, c=0.0; // 初值

/* 構造問題 */
LevenbergMarquardt lm(&a, &b, &c);
lm.setParameters(1e-10, 1e-10, 100, true);

/* 製造數據 */
const size_t N = 100; //數據個數
cv::RNG rng(cv::getTickCount());
for( size_t i = 0; i < N; i ++)
{
/* 生產帶有高斯雜訊的數據 */
double x = rng.uniform(0.0, 1.0) ;
double y = exp(aa*x*x + bb*x + cc) + rng.gaussian(0.05);

/* 添加到觀測中 */
lm.addObservation(x, y);
}
/* 用LM法求解 */
lm.solve();

return 0;
}

推薦閱讀:

相关文章